• Title/Summary/Keyword: 추론적 이해

Search Result 368, Processing Time 0.026 seconds

수학적 추론 능력 평가 기준에 관한 연구

  • Jeon, Pyeong-Guk;Kim, Eun-Hui;Kim, Won-Gyeong
    • Communications of Mathematical Education
    • /
    • v.13 no.2
    • /
    • pp.425-455
    • /
    • 2002
  • 본 연구는 수학교육에서 강조되고 있는 수학적 힘의 구성 요소 중의 하나인 수학적 추론 능력에 대한 교사들의 구체적인 이해를 돕고, 문제 해결 과정에서 학생들의 추론 능력을 분석하고 평가하는 데 도움을 주기 위해 문헌 연구 및 학생반응 분석결과에 기초하여 귀납적, 유비적, 연역적 추론능력에 대한 평가기준을 개발하였다. 또한, 개발된 평가기준을 구체적인 문제에 적용하였으며 이를 기초로 문제점을 수정 ${\cdot}$ 보완한 후, 전문가의 타당성 검증과 동일한 학생반응에 대한 채점결과의 일치도를 알아봄으로써 신뢰도 검증을 실시하였다.

  • PDF

Problem Solving Environment for Cognitive Support Imagery Exploitation (인지적 형상 추출을 위한 문제 해결 환경)

  • 조영기;백성욱;김상수;조주상;장철호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.532-534
    • /
    • 2004
  • 본 논문은 분석가들에게 Naive Geography에 기반 한 형상 추출기술과 상식적 공간추론 기술을 제공하는 문제 해결 환경인 NG Analyst의 개발 사례에 대해 다뤘다. 지형과 각각의 객체에 대한 구성 정보는 분산된 지형공간의 지식을 사실적으로 묘사하는 추론집합에 의해 표현되며 사용자가 형상정보를 인지적으로 이해할 수 있도록 3차원으로 표현한다. 여러 그래픽 적인 요소들로 표현된 Naive Geography 정보들은 분석가들에게 실세계의 공간과 객체들을 유사하게 구성하여 제공함으로서 직관적으로 이해하고 상호작용 할 수 있는 문제 해결 환경을 제공한다.

  • PDF

University Students' Understanding and Reasoning about Rational Number Concept (유리수 개념에 대한 대학생들의 이해와 추론)

  • Kang, Yun-Soo;Chae, Jeong-Lim
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.3
    • /
    • pp.483-498
    • /
    • 2010
  • The purpose of this paper is to investigate the dispositions of university students' understanding and reasoning about rational number concept. For this, we surveyed for the subject groups of prospective math teachers(33), engineering major students(35), American engineering and science major students(28). The questionnaire consists of four problems related to understanding of rational number concept and three problems related to rational number operation reasoning. We asked multi-answers for the front four problem and the order of favorite algorithms for the back three problems. As a result, we found that university students don't understand exactly the facets of rational number and prefer the mechanic approaches rather than conceptual one. Furthermore, they reasoned illogically in many situations related to fraction, ratio, proportion, rational number and don't recognize exactly the connection between them, and confuse about rational number concept.

  • PDF

An Inferentialist Account of Indicative Conditionals and Sellars-Brandom Semantics (직설법적 조건문에 대한 추론주의적 분석과 셀라스-브랜덤 의미론)

  • Lee, Byeongdeok
    • Korean Journal of Logic
    • /
    • v.15 no.3
    • /
    • pp.347-375
    • /
    • 2012
  • In my article published in 2008, I offered an inferentialist account of indicative conditionals. In her recent paper, Professor Seawha Kim raises three objections. First, I misunderstand Sellars-Brandom in that I take only concept-constitutive inferences as materially valid inferences. Second, Sellars and Brandom talk about the common features of all kinds of conditionals including counterfactual conditionals, but I construe their view as the analysis of the indicative conditionals only. Third, either my analysis is incompatible with Sellars-Brandom inferentialism or my analysis is too general. In this paper I argue that Seawha Kim's objections are all based on insufficient understandings of Sellars's and Brandom's views. First, it is Sellars's view that materially valid inferences are restricted within concept-constitutive inferences. Second, neither Sellars nor Brandom proposes a specific theory about the indicative conditional. Instead, they argue for the expressive role of the conditional. What I accept from their views is this expressive role of the conditional. The detailed proposals about the indicative conditional in my aforementioned article are my own. Third, the differences among conditionals have no direct bearing on Sellars-Brandom inferentialism. In addition, the meaning and role of the conditional expression 'if-then' do not require more than what I have argued for it.

  • PDF

Empowering Emotion Classification Performance Through Reasoning Dataset From Large-scale Language Model (초거대 언어 모델로부터의 추론 데이터셋을 활용한 감정 분류 성능 향상)

  • NunSol Park;MinHo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.59-61
    • /
    • 2023
  • 본 논문에서는 감정 분류 성능 향상을 위한 초거대 언어모델로부터의 추론 데이터셋 활용 방안을 제안한다. 이 방안은 Google Research의 'Chain of Thought'에서 영감을 받아 이를 적용하였으며, 추론 데이터는 ChatGPT와 같은 초거대 언어 모델로 생성하였다. 본 논문의 목표는 머신러닝 모델이 추론 데이터를 이해하고 적용하는 능력을 활용하여, 감정 분류 작업의 성능을 향상시키는 것이다. 초거대 언어 모델(ChatGPT)로부터 추출한 추론 데이터셋을 활용하여 감정 분류 모델을 훈련하였으며, 이 모델은 감정 분류 작업에서 향상된 성능을 보였다. 이를 통해 추론 데이터셋이 감정 분류에 있어서 큰 가치를 가질 수 있음을 증명하였다. 또한, 이 연구는 기존에 감정 분류 작업에 사용되던 데이터셋만을 활용한 모델과 비교하였을 때, 추론 데이터를 활용한 모델이 더 높은 성능을 보였음을 증명한다. 이 연구를 통해, 적은 비용으로 초거대 언어모델로부터 생성된 추론 데이터셋의 활용 가능성을 보여주고, 감정 분류 작업 성능을 향상시키는 새로운 방법을 제시한다. 제시한 방안은 감정 분류뿐만 아니라 다른 자연어처리 분야에서도 활용될 수 있으며, 더욱 정교한 자연어 이해와 처리가 가능함을 시사한다.

  • PDF

5th Graders' Logical Development through Learning Division with Decimals (5학년 아동의 소수 나눗셈 원리 이해에 관한 연구)

  • Lee, Jong-Euk
    • School Mathematics
    • /
    • v.9 no.1
    • /
    • pp.99-117
    • /
    • 2007
  • In this paper it is discussed how children develop their logical reasoning beyond difficulties in the process of making sense of division with decimals in the classroom setting. When we consider the gap between mathematics at elementary and secondary levels, and given the logical nature of mathematics at the latter levels, it can be seen as important that the aspects of children's logical development in the upper grades in elementary school should be clarified. This study focuses on the teaching and learning of division with decimals in a 5th grade classroom, because it is well known to be difficult for children to understand the meaning of division with decimals. It is suggested that children begin to conceive division as the relationship between the equivalent expressions at the hypothetical-deductive level detached from the concrete one, and that children's explanation based on a reversibility of reciprocity are effective in overcoming the difficulties related to division with decimals. It enables children to conceive multiplication and division as a system of operations.

  • PDF

A Study on Children's Proportional Reasoning Based on An Ill-Structured Problem (초등수학 비구조화된 문제 해결 과정에서의 비례적 추론)

  • Hong, Jee Yun;Kim, Min Kyeong
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.723-742
    • /
    • 2013
  • The purpose of this study was to analyze children's proportional reasoning process on an ill-structured "architectural drawing" problem solving and to investigate their level and characteristics of proportional reasoning. As results, they showed various perspective and several level of proportional reasoning such as illogical, additive, multiplicative, and functional approach. Furthermore, they showed their expanded proportional reasoning from the early stage of perception of various types of quantities and their proportional relation in the problem to application stage of their expanded and generalized relation. Students should be encouraged to develop proportional reasoning by experiencing various quantity in ration and proportion situations.

  • PDF

Exploring the Factors Influencing the Understanding of the Nature of Science through Authentic Open Inquiries (개방적 참탐구 활동에서 학생들의 과학의 본성에 대한 이해에 영향을 미치는 요인 탐색)

  • Kim, Mi-Kyung;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.565-578
    • /
    • 2008
  • The purpose of this study is to search for the factors that influence students' understanding of the nature of science through the experience of the cognitive processes of authentic open inquiries. The freshmen of a science high school practiced authentic open inquiries reflecting epistemological characteristics of authentic science. The case study was conducted with four focus students who were successful or unsuccessful at learning the nature of science during the authentic open inquiry activity. Questions that the focus students asked during the inquiries as well as students' answers to pre- and post-VNOS (C type) were analysed, and then elaborated in the semi-structured interview. The findings suggest that open inquiry activities provide the inquiry contexts that help science high school students to understand the nature of science, and that the characteristics of students' cognition influence the understanding of the nature of science. For instance, designing experiments with their own research questions had an influence on the students' understanding about the scientific methods and the diversity of research types, and drawing conclusions from their own data made students experience scientific reasoning. In addition, the experience of collecting anomalous data helped students to understand the role of inferences in generating scientific knowledge and the creative nature of scientific knowledge. In this inquiry context, the reflective thinking that came from proactive discussion among students, made students think about the validity of the designing experiments and interpreting data, and helped them to understand the uncertain nature of reasoning and the diverse nature of scientific methods. Moreover, divergent thinking linked to analogical thinking helped students to understand the creative nature of science.

An Analysis of Components of Reasoning Process according to the Levels of Cognitive Demands of the Reasoning Tasks -Focused on the Highschool level Mathematical Sequence- (추론 과제의 인지적 난이도 수준에 따른 추론 과정 구성요소 분석 -고등학교 수준 수열 단원을 중심으로-)

  • Oh, Young-Seok
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.395-423
    • /
    • 2019
  • The purpose of the study is to analyze the levels of cognitive demands and components of the reasoning process presented in the mathematical sequence section of three high school mathematics textbooks in order to provide implications for the development of reasoning tasks in the future mathematics textbooks. The results of the study have revealed that most of the reasoning tasks presented in the mathematical sequence section of the three high school mathematics textbooks seemed to require low-level cognitive demands and that low-level cognitive demands reasoning tasks required only a component of one reasoning process. On the other hand, only a portion of the reasoning tasks appeared to require high-level of cognitive demands, and high-level cognitive demands reasoning tasks required various components of reasoning process. Considering the results of the study, it seems to suggest that we need more high-level cognitive demands reasoning tasks to develop high-level cognitive reasoning that would provide students with learning opportunities for various processes of reasoning, and that would provide a deeper understanding of the nature of reasoning.

컴퓨터 매체를 이용한 논리 교수법에 관한 연구 - 이질적 추론을 중심으로 -

  • Kim, Yeong-Jeong
    • Korean Journal of Logic
    • /
    • v.5 no.1
    • /
    • pp.1-26
    • /
    • 2001
  • 컴퓨터라는 새로운 매체의 도입의 이점이 컴퓨터 매체의 제반 특성들을 잘 활용함으로써 학생들의 호기심을 유발하고 학생들의 학습 효과를 높일 수 있다는 데에만 국한되는 것은 아니다. 새로운 컴퓨터 매체의 도입은 논리학의 여러 중심 개념들 자체에 대한 이해의 심도를 증진시킴으로써 논리학을 새로운 영역으로 확대시켜 주기도 한다. 그 새로운 영역은 그림과 같은 비언어적 표상을 핵심적으로 포함한 추론, 즉 문자와 그림을 동시에 포함하는 이질적인 추론(heterogeneous reasoning)을 허용하는 영역이다. 논리학은, 정보가 어떻게 표상되든 상관없이, 정보 추출의 타당한 형태들에 관한 연구이다. 전통적으로 논리학자들은 정보 추출의 타당한 형태들의 매우 작은 부분(즉, 언어적 표상)에만 초점을 맞추었다. 그러나 컴퓨터 매체의 활용과 더불어 이제 논리학은 시각적 표상을 포함하여 다양한 표상들을 어떻게 사람들이 사용하는지 파악해야 한다. 이러한 과업의 성취를 위해, 구문론, 의미론, 논리적 귀결, 증명, 반례 등의 전통적 개념을 이러한 새로운 형태의 표상들을 수용할 수 있는 방식으로 확장하고 풍부하게 만들어야 한다. 그림 표상과 문자 표상을 함께 사용하는 추론 체계인 Hyperproof에 대한 연구는 이러한 확장된 논리 이론을 형성하는 데 기여한다.

  • PDF