• 제목/요약/키워드: 추가범주

검색결과 174건 처리시간 0.029초

전이행렬자료의 동적 단순대응분석

  • 서명록;최용석;강창완;임승범
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.269-274
    • /
    • 2003
  • 일반적으로 단순대응분석에서는 하나의 분할표 자료에 대한 행과 열의 대응관계만을 주로 다루어 왔으나 시점의 변화에 따른 행과 열 범주의 대응관계에 대한 변화의 추세를 나타내지는 못했다. 본 연구에서는 새로이 추가범주를 활용한 전이행렬자료의 동적 단순대응분석(dynamic simple correspondence analysis of transition matrix data: DSCA)을 제안하고자 한다. DSCA는 시점의 변화에 따른 행과 열 범주의 변화되는 대응관계뿐만 아니라 행 범주들의 시간적인 변화의 경향을 보여주는 장점을 갖고 있다. 또한 기준시점에서 다음 시점으로의 변화도 예측하여 보여줌으로써 향후 변화의 경향을 시각적으로 보여준다.

  • PDF

One-class 문서 분류를 위한 긍정 자질과 부정 자질의 결합 (Combining Positive and Negative Features for One-Class Document Classification)

  • 송호진;강인수;나승훈;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2005년도 제17회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.35-42
    • /
    • 2005
  • 문서 분류에서의 one class 분류 문제는 오직 하나의 범주를 생성하고 새로운 문서가 주어졌을 때 그 문서가 미리 만들어진 하나의 범주에 속하는가를 판별하는 문제이다. 기존의 여러 범주로 이루어진 분류 문제를 해결할 때와는 달리 one class 분류에서는 학습 시에 관심의 대상이 되는 하나의 범주와 관련이 있는 문서들만을 사용하여 학습을 수행하기 때문에 범주의 경계를 정하는 것은 매우 어려운 작업이다. 이에 본 논문에서는 기존의 연구에서 one class 분류 문제를 해결할 때 관심의 대상이 되는 예제의 일부를 부정 예제로 간주하여 one class 문제를 two class 문제로 변환하고 추가적으로 새로운 가상 부정 예제를 설정하여 학습을 수행하였던 방법에서 더 나아가 범주화를 위한 적절한 부정자질을 선택하고 이를 긍정자질과 함께 사용하여 학습을 수행한 후 SVM을 통하여 범주화 성능을 학인 해 보기로 한다.

  • PDF

One-class 문서 분류를 위한 가상 부정 예제의 사용 (One-Class Document Classification using Pseudo Negative Examples)

  • 송호진;강인수;나승훈;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.469-471
    • /
    • 2005
  • 문서 분류에서의 one class classification 문제는 오직 하나의 범주를 생성하고 새로운 문서가 주어졌을 때 미리 만들어진 하나의 범주에 속하는가를 판별하는 문제이다. 기존의 여러 범주로 이루어진 분류 문제를 해결할 때와는 달리 one class classification에서는 학습 시에 이미 정해진 하나의 범주와 관련이 있는 문서들만을 사용하여 학습을 수행하기 때문에 범주의 경계를 정하는 것이 매우 어려운 작업이며 또한 분류기의 성능에 있어서도 매우 중요한 요소로 작용하게 된다. 본 논문에서는 기존의 연구에서 one class classification 문제를 해결할 때 관심의 대상이 되는 예제의 일부를 부정 예제로 간주하여 one class문제를 two class문제로 변경시켜 학습을 수행했던 것에서 더 나아가 추가적으로 새로운 가상 부정 예제를 설정하여 학습을 수행하고, SVM을 통하여 범주화 성능을 확인해 보기로 한다.

  • PDF

대용량 데이터를 위한 전역적 범주화를 이용한 결정 트리의 순차적 생성 (Incremental Generation of A Decision Tree Using Global Discretization For Large Data)

  • 한경식;이수원
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.487-498
    • /
    • 2005
  • 최근 들어, 대용량의 데이터를 처리할 수 있는 트리 생성 방법에 많은 관심이 집중되고 있다 그러나 대용량 데이터를 위한 대부분의 알고리즘은 일괄처리 방식으로 데이터를 처리하기 때문에 새로운 데이터가 추가되면 이 데이터를 반영한 결정 트리를 생성하기 위해 처음부터 트리를 다시 생성해야 하다. 이러한 재생성에 따른 비용문제에 보다 효율적인 접근 방법은 결정 트리를 순차적으로 생성하는 접근 방법이다. 대표적인 알고리즘으로 BOAT와 ITI를 들 수 있으며 이들 알고리즘은 수치형 데이터 처리를 위해 지역적 범주화를 이용한다. 그러나 범주화는 정렬된 형태의 수치형 데이터를 요구하기 때문에 대용량 데이터를 처리해야하는 상황에서 전체 데이터에 대해 한번만 정렬을 수행하는 전역적 범주화 기법이 모든 노드에서 매번 정렬을 수행하는 지역적 범주화보다 적합하다. 본 논문은 수치형 데이터 처리를 위해 전역적 범주화를 이용하여 생성된 트리를 효율적으로 재생성하는 순차적 트리 생성 방법을 제안한다. 새로운 데이터가 추가될 경우, 전역적 범주화에 기반 한 트리를 순차적으로 생성하기 위해서는 첫째, 이 새로운 데이터가 반영된 범주를 재생성해야 하며, 둘째, 범주 변화에 맞게 트리의 구조를 변화시켜야한다. 본 논문에서는 효율적인 범주 재생성을 위해 샘플 분할 포인트를 추출하고 이로부터 범주화를 수행하는 기법을 제안하며 범주 변화에 맞는 트리 구조 변화를 위해 신뢰구간과 트리 재구조화기법을 이용한다. 본 논문에서 피플 데이터베이스를 이용하여 기존의 지역적 범주화를 이용한 경우와 비교 실험하였다.

문서 구조 정보에 기반한 웹 페이지 범주화 모델 (A Web Page Categorization Model Based on Document Structural Information)

  • 정성화;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.91-96
    • /
    • 1998
  • 본 논문에서는 주제범주 체계를 이용한 웹 검색이 가지는 장점을 이용 할 수 있도록 인터넷 웹 페이지들을 주제범주 체계에 따라 자동으로 분류하는 모델을 제시한다. 특히 웹 페이지 작성자들의 의도를 범주화에 반영할 수 있는 방법으로 HTML 태그를 이용한다. 즉 웹 페이지의 표현에 있어서 벡터 스페이스 모델에서의 색인어 빈도 가중치에 태그 가중치를 추가 하여 보다 좋은 성능을 얻도록 하였다. 그리고 주제범주를 표현하는데 사용되는 자질의 선정에는 기대상호정보, 상호정보 척도를, 문서간 유사도 비교에는 최근린법을 사용하였다. 전북대에서 정보탐정용으로 분류한 웹 페이지를 대상으로 실험하였으며, 기본 모델 대비 약 7%의 정확도 향상을 얻을 수 있었다.

  • PDF

시소러스 국제표준 기반 기본 범주의 확장에 관한 연구 (A Study on the Expansion of Fundamental Categories Based on Thesaurus International Standards)

  • 장인호
    • 한국도서관정보학회지
    • /
    • 제50권1호
    • /
    • pp.273-291
    • /
    • 2019
  • 본 연구는 시소러스 국제표준(ISO 25964-1) 제11절 "패싯 분석"과 제5절의 "시소러스에 있어서의 개념 및 그들의 범위"를 분석하여, 제11절에 예시된 기본 범주(대상, 물질, 에이전트, 행위, 장소, 시간 등)를 확장하는 데에 목적이 있다. 이를 위해 온톨로지의 최상위 개념(구구리일랑(溝口理一郞)의 상위 온톨로지인 YAMATO)과 기존의 기본 범주들(Ranganathan의 PMEST, FRBR 제3집단, CRG 13 범주 등)을 참조하여, 기본 범주에 정신적 실체를 명시적으로 추가하고, 일부를 조정하여 기본 범주를 확립했다. 또한, 확립된 기본 범주를 Ranganathan의 PMEST의 구체성/추상성과 구구리일랑(溝口理一郞)의 YAMATO의 독립성/종속성을 기반으로 재편성 및 구조화하였다. 최상위 범주를 독립 실체와 종속 실체로 이분하고 하위 구분으로 전자는 28범주, 후자는 2범주를 두었다. 본 연구의 결과는 기본 범주의 활용이 기대되는 분류, 택소노미, 시소러스 등의 제어 어휘 및 정보검색용 온톨로지를 생성할 때 최상위 개념으로서 재활용되고 참조할 수 있을 것으로 기대된다.

전역적 범주화를 위한 샘플 분할 포인트를 이용한 점진적 기법 (An Incremental Method Using Sample Split Points for Global Discretization)

  • 한경식;이수원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권7호
    • /
    • pp.849-858
    • /
    • 2004
  • 대부분의 교사학습 알고리즘은 수치형 변수 처리의 어려움을 해결하기 위해 전처리 단계에서 연속형 변수를 범주형으로 변환시킨 후 적용된다. 이러한 전처리 단계를 전역적 범주화라 하며 빈즈(Bins)라는 클래스 분포 리스트를 이용한다. 그러나 대부분의 전역적 범주화 기법은 단일 빈즈를 필요로 하기 때문에 데이타가 대용량이고 범주화를 수행할 변수의 범위가 매우 클 경우, 단일 빈즈를 생성하기 위해 많은 정렬 및 병합을 수행해야한다. 또한, 기존의 방법은 일괄처리 방식으로 범주화를 수행하기 때문에 새로운 데이타가 추가되면 이 데이타가 반영된 범주를 생성하기 위해 처음부터 범주화를 다시 수행해야한다. 본 논문은 이러한 문제점을 해결하기 위해 샘플 분할 포인트를 추출하고 이로부터 범주화를 수행하는 기법을 제안한다. 본 논문의 접근 방법은 단일 빈즈를 생성하기 위한 병합이 필요 없기 때문에 대용량 데이타에 대한 범주화를 수행할 때 효율적이다. 본 연구에서는 실제 데이타와 가상의 데이타를 이용하여 기존의 방법과 비교 실험하였다.

고품질 바이그램을 이용한 문서 범주화 성능 향상 (Improving Text Categorization with High Quality Bigrams)

  • 이찬도;탄체이드멩;왕유안팡
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.415-420
    • /
    • 2002
  • 본 논문은 정보이익을 사용하여 고품질 바이그램을 생성하는 효율적 문서 범주화 알고리즘을 제안한다. 실험 결과 유니그램에 적은 수의 바이그램을 추가해서 나이브 베이즈 분류기에 적용했을 때 문서 범주화 성공률은 상당히 향상되었다. 결과 분석은 제안한 알고리즘이 양의 문서를 분류하는데 더 우수하다는 것을 제시한다.

Modified ECCD 및 문서별 범주 가중치를 이용한 문서 분류 시스템 (A Document Classification System Using Modified ECCD and Category Weight for each Document)

  • 한정석;박상용;이수원
    • 정보처리학회논문지B
    • /
    • 제19B권4호
    • /
    • pp.237-242
    • /
    • 2012
  • 웹 문서 정보 서비스는 관리자의 효율적 문서관리와 사용자의 문서검색 편의성을 위해 문서 분류 시스템을 필요로 한다. 기존의 문서 분류 시스템은 분류하고자 하는 문서 내 선택된 자질어의 개수가 적거나, 특정 범주의 문서 비율이 높아 그 범주에서 대부분의 자질어가 선택되어 모델이 생성된 경우 분류 정확도가 저하되는 문제점을 가진다. 이러한 문제점을 해결하기 위해 본 논문에서는 'Modified ECCD' 기법 및 '문서별 범주 가중치' 특징 변수를 사용한 문서 분류 시스템을 제안한다. 실험 결과, 제안 방법인 'Modified ECCD' 기법이 ${\chi}^2$ 및 ECCD 기법에 비해 높은 분류 성능을 보였으며, '문서별 범주 가중치' 특징 변수를 'Modified ECCD' 기법으로 선택된 자질어 변수에 추가하여 학습하였을 경우에 더 높은 분류 성능을 보였다.

결합범주문법을 이용한 한국어 문장의 자연스러운 억양 생성에 대한 연구 (Predicting Contextually Appropriate Intonation from Utterances in Korean with Combinatory Categorial Grammar)

  • 이화진;박종철
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 한글 및 한국어 정보처리
    • /
    • pp.68-75
    • /
    • 2000
  • 상대방에게 의사를 전달할 때 보다 정확하게 자신의 의도를 표현하려면 대화의 흐름에 맞는 적절한 억양을 주어 발화해야 한다. 본 논문에서는 결함범주문법을 이용하여 문장을 분석하고 문장 내 정보와 문장 간 정보 즉, 문맥에 따라 강세(pitch accent), 휴지(pause), 강조 등의 억양정보를 어떻게 나타내야 하는지를 분석하여 문장의 정보구조에 추가하는 방법을 제시한다.

  • PDF