• Title/Summary/Keyword: 최적 적분 제어

Search Result 45, Processing Time 0.03 seconds

A design on robust integral-type optimal model following servo system (강인한 적분형 최적 모델 추종형 서보계의 구성에 관한 연구)

  • 황창선;김정택;이양우;최일섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1024-1027
    • /
    • 1992
  • This paper deals with design method of the model following servo system in which optimal regulator probelm is used to design the controllers that make the step/ramp response of the plant be keptclose to a specified ideal step/ramp response of the model. The characteristics of this system is robust in the presence of the specified disturbances or the partameter perturbations of the plant. Especially, by direct feedforward compensator from the reference input the steady state offset of plant output response is excluded and the transient response is improved. Examples are give and the results of the design of the model follwing servo systems are verified by the computer simulation.

  • PDF

Experimental Study on the MIMO Control Algorithm of a Multi-Heat Pump Based on PRBS Identification Scheme (PRBS 시스템 규명 기법 적용 멀티 열펌프의 다중입출력 제어특성에 관한 실험적 연구)

  • Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.16-24
    • /
    • 2013
  • A multi-heat pump provides the benefits of comfort, energy conservation and easy maintenance. Recently, the multi-heat pump has been widely employed in small and medium-sized buildings. However, the control algorithm of the multi-heat pump are limited in the open literature due to complicated operating conditions. In this study, the MIMO control algorithm using integral optimum regulator was designed and the control performance of it was analyzed. In addition, system model of the control plant was developed by PRBS system identification scheme. The MIMO controller adopting the integral optimum regulator yielded satisfactory control performance results.

A Study on the Prefilter to Protect Overshoot of Active Magnetic Bearing using Integral Type LQR-design Method (적분형 LQR 설계 기법을 이용한 능동자기베어링의 오버슈트 방지용 입력필터에 관한 연구)

  • Kang, Seong-Gu;Lee, Kee-Seok;Chung, Jun-Mo;Shin, Woo-Cheol;Hong, Jun-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • Active magnetic bearing has been adopted to support the rotor by electomagnetic force without mechanical contact and lubrication process. A property of the control system for magnetic bearing is improved in accordance with making higher system gain. If the control system has integral part, an excessive overshoot response is shown by making higher integral gain. Therefore, this paper suggests a PID control system in order to eliminate the overshoot at the first stage and improve response characteristics to an impact disturbance at the status of levitation. The control gain was obtained by LQR design method which has the structure of I-PD control system in the state space. The PID control system containing prefilter has the same structure as the I-PD control system. Therefore, the PID control system adopted is able to be tuned by LQR design method. Finally, this paper shows the effect of the prefilter on the active magnetic bearing system through response experiments for levitation responses.

Application of Adaptive Control Theory to Nuclear Reactor Power Control (적응제어 기법을 이용한 원자로 출력제어)

  • Ha, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.336-343
    • /
    • 1995
  • The Self Tuning Regulator(STR) method which is an approach of adaptive control theory, is ap-plied to design the fully automatic power controller of the nonlinear reactor model. The adaptive control represent a proper approach to design the suboptimal controller for nonlinear, time-varying stochastic systems. The control system is based on a third­order linear model with unknown, time-varying parameters. The updating of the parameter estimates is achieved by the recursive extended least square method with a variable forgetting factor. Based on the estimated parameters, the output (average coolant temperature) is predicted one-step ahead. And then, a weighted one-step ahead controller is designed so that the difference between the output and the desired output is minimized and the variation of the control rod position is small. Also, an integral action is added in order to remove the steady­state error. A nonlinear M plant model was used to simulate the proposed controller of reactor power which covers a wide operating range. From the simulation result, the performances of this controller for ramp input (increase or decrease) are proved to be successful. However, for step input this controller leaves something to be desired.

  • PDF

STATION-KEEPING MANEUVERS FOR A GEOSTATIONARY SATELLITE USING LINEAR QUADRATIC REGULATOR (선형제차조절법을 이용한 정지궤도 위성의 위치보존 궤도조정)

  • 이선익;최규홍;이상욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.142-149
    • /
    • 1997
  • This paper applied one of the well-known optimal control theory, namely, linear quadratic regulator(LQR), to the station-keeping maneuvers(SKM) for a geostationary satellite. The boundary conditions to transfer the system with a good accuracy at a terminal time were based upon the predicted orbital data which are created due to the Earth's non-uniform mass distribution's effect during 14 days and due to luni-solar effect during 28 days. Through the linearization of the nonlinear system equation with respect to reference orbit and the numerical integration of Riccati equation, the optimal trajectories and the corresponding control law have been obtained by using LQR. From the comparison of ${\Delta}V$ obtained by LQR with the ${\Delta}V$ obtained anatically by geometric method, Station Keeping Maneuvers(SKM) via LQR may provide comparable results to a real system. Furthermore it will demonstrate the possibility in fuel optimization and life extension of geostationary satellite.

  • PDF

Optimization of a PI Controller Design for an Oil Cooler System with a Variable Rotating Speed Compressor (가변속 압축기를 갖는 오일쿨러의 최적 PI 제어기 설계)

  • Kwon, Taeeun;Jeong, Taeyoung;Jeong, Seokkwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.502-508
    • /
    • 2016
  • An optimized PI controller design method is presented to promote the control performance of an oil cooler system for high precision machine tools. First, a transfer function model of the oil cooler system with a variable rotating speed compressor was obtained by the perturbation method as the first order system with a negligible dead time. Then, the closed-loop control system was described as the second order system with a zero. Its dynamic behaviors are mostly governed by characteristic parameters, the damping ratio, and the natural frequency which is incorporated in PI gains. Next, an optimum integral of the time-weighted absolute error (ITAE) criterion was applied to the second order system. The characteristic parameters can be determined by the given design specifications, percent overshoots and settling times and comparisons with the ITAE criterion. Hence, the PI gains were plainly identified in a deterministic way. Finally, the PI gains were fine-tuned to obtain desirable dynamics in real systems, considering the zero effect and parameter variations. The validity of the proposed method was proven by computer simulations and real experiments for selected cases.

Deriviation of the z-transfer Function of Optimal Digital Controller Using an Integral-Square-Error Criterion with the continuous-data Model in Linear Control Systems (선형연속데이터형 제어계통의 플랜트와 디지털모델의 오차자승적분지표에 의한 최적디지탈제어기의 전달함수유도)

  • Park, Kyung-Sam
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.6
    • /
    • pp.211-218
    • /
    • 1983
  • In this paper, an attempt is made to match the continuous state trajectory of the digital control system with that of its continuous data model. Matching the state trajectories instead of the output responses assures that the performances of the internal variables of the plant as well as the output variables are preserved in the discretization. The mathematical tool used in this research is an extended maximum principle of the Pontryagin type, which enables one to synthesize a staircase type of optimal control signals, such as the output signal of a zero-order hold asociated with a digital controller. A general mathematical expression of the digital controller which may be used to replace the analog controller of a general system while preserving as mauch as possible the performance characteristics of the original continuous-data control system is derived in this paper.

  • PDF

Integral-Augmented Optimal VSS for Control of Uncertain SISO Systems (불확실 시스템의 제어를 위한 적분 최적 가변 구조 알고리듬)

  • Lee, Jung-Hoon;Moon, Gun-Woo;Lee, Dae-Sik;Lee, Ju-Jang;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.335-337
    • /
    • 1993
  • An integral-augmented variable structure system is suggested for the control of an uncertain SISO systems without the reaching phase problems. The integral-augmented sliding surface is defined in order to remove the reaching phase, then it is designed using the optimal technique. The example results show the effectiveness of the algorithm.

  • PDF

A fast transient control of EDPA gain on channel add/drop WDM networks (채널 가감 파장분할다중(WDM)망에서 EDFA 이득의 빠른 과도 응답 제어)

  • Park Jungmoon;Lee Sangheon;Shin Seoyong;Song Seongho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.233-240
    • /
    • 2005
  • In this paper, we have shown the gain recovery time of erbium-doped fiber amplifier(EDFA) in WDM add/drop networks can be reduced to less than $3\mu$sec by employing disturbance observer technique with PID controller which is based on 3-level EBFA model. The $3\mu$sec transient time is the fastest one ever reported and it is about $1\%$ of $250\mu$sec previously obtained from disturbance observer technique with PI controller which was based on 2-level EDFA model and it is also less than $200\mu$sec of commercially available EDFAs for WDM networks. We were able to obtain this result by analyzing various system characteristics as we change the parameters of disturbance observer and PID controller. If this result is applied to a commercial product, the product will do an important role in the future dynamic WDM networks.

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.