• Title/Summary/Keyword: 최적 응집 pH

Search Result 116, Processing Time 0.025 seconds

Treatment of highly concentrated organic wastewater by high efficiency $UV/TiO_{2}$ photocatalytic system (고효율 자외선/광촉매 시스템을 이용만 고농도 유기성 폐수처리)

  • Kim, Jung-Kon;Jung, Hyo-Ki;Son, Joo-Young;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.83-89
    • /
    • 2008
  • Food wastewater derived from the three-stage methane fermentation system developed in this lab contained high concentration organic substances. The organic wastewater should be treated through advanced wastewater treatment system to satisfy the "Permissible Pollutant Discharge Standard of Korea". In order to treat the organic wastewater efficiently, several optimum operation conditions of a modified $UV/TiO_{2}$ photocatalytic system have been investigated. In the first process, wastewater was pre-treated with $FeCl_{3}$. The optimum pH and coagulant concentration were 4.0 and 2000mg/L, respectively. Through this process, 52.6% of CODcr was removed. The second process was $UV-TiO_{2}$ photocatalytic reaction. The optimum operation conditions for the system were as follows: UV lamp wavelength, 254 nm; wastewater temperature, $40^{\circ}C$; pH 8.0; and air flow rate, 40L/min, respectively. Through the above two combined processes, 69.7% of T-N and 70.9% of CODcr contained in the wastewater were removed.

The Predilution Effect of Al-based Liquid Coagulants for the Optimal Efficacy (최적 응집 효율을 위한 Al계 액상 응집제의 희석 효과)

  • Heo, Jae-Yong;Lee, Sang-Wha
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • The coagulation efficacy of Al-based coagulants (such as Alum, PACS, and PACC) was investigated to ascertain removal efficiencies of turbidity and phosphate with variation of solution pH, coagulant dosages, and pre-dilution ratios. The efficacy of Al-based coagulants was maximized in the pH range of 6~9. Under the initial condition of pH 8, $10mg/L\;{PO_4}^{3-}$, and 20 NTU, Al-based coagulants exhibited a similar efficacy in the removal of turbidity, whereas the removal efficiency of phosphate was clearly dependent on the basicity of coagulants: Alum (0%) > PACS (45~50%) > PACC (70%). At high initial turbidity of 100 NTU, polymeric coagulants, such as PACS and PACC, exhibited a higher removal efficiency of turbidity compared to Alum. In comparison to direct injection of coagulants at low initial turbidity (20 NTU), 500~2000 times pre-diluted Alum, exhibited reduced coagulation efficacy; however, removal efficiencies of turbidity and phosphate increased with the increase of retention time. Pres-diluted PACC exhibited the enhanced coagulation efficacy followed by silght decrease of the removal efficiencies with increase of the retention time. At high initial turbidity of 100 NTU, pre-diluted Alum and PACC exhibited higher removal efficiencies of turbidity and phosphate.

Biochemical Properties of Seed Lectin from Korean Soybean Cultivars Developed for Soy Source (한국산 장류콩 종자 렉틴의 생화학적 특성)

  • Wang, Yushan;Roh, Kwang-Soo
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.170-176
    • /
    • 2009
  • Lectin was finally isolated on Sephadex G-100 from Korean soybean cultivars developed for soy source and investigated its some biochemical properties. Native PAGE pattern of this lectin revealed a molecular weight of 108 kDa as tetramer. The molecular weight of this lectin isolated as double protein band by SDS-PAGE was calculated to be 32 and 22 kDa from the relative mobilities compared with those of the standard proteins. Among the tested red blood cell, the isolated lectin agglutinated rabbit red blood cell treated with trypsin, but did not agglutinated human red blood cells (A, B, AB, O), rat, and untreated rabbit red blood cell. The optimal temperature and thermal stability of isolated lectin was at 20-$50^{\circ}C$ and 10-$60^{\circ}C$, respectively. This lectin was stable at 7.2, and showed complete loss in its activity below pH 6.2 and above pH 8.0.

Application of Enhanced Coagulation for Nakdong River Water Using Aluminium and Ferric Salt Coagulants (낙동강 원수를 대상으로 Al염계 및 Fe염계 응집제를 이용한 고도응집의 적용)

  • Moon, Sin-Deok;Son, Hee-Jong;Yeom, Hoon-Sik;Choi, Jin-Taek;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.590-596
    • /
    • 2012
  • Enhanced coagulation is best available technologies to treat NOM in water to produce clean drinking water. In this research, the comparison experiments between conventional coagulation (CC) and enhanced coagulation (EC) using 4 type coagulants i.e., ferric chloride, aluminium sulphate (alum), poly aluminium sulphate organic magnesium (PSOM) and poly aluminium chloride (PACl) were performed in terms of surrogate parameters such as dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), haloacetic acid formation potential (HAAFP) and zeta potential variation in order to find out the most effective coagulant and conditions to fit Nakdong River water. When applied to EC process, the turbidity removal efficiency did not increased gradually compared to the CC process when adding coagulants. Furthermore, the removal efficiency of turbidity became decreased much more as coagulants were added increasingly whereas the removal efficiency of DOC, THMFP and HAAFP became increased by 13~18%, 9~18% and 9~18% respectively compared to the CC process. The characteristics of turbidity removal showed relatively high removal efficiency considering the pH variation in entire pH range when using $FeCl_3$ and PACl. Additionally, in case of alum and PSOM steady removal efficiency was shown between pH 5 and pH 8. In terms of DOC surrogate the coagulants including 4 type coagulants indicated high removal efficiency between pH 5 and pH 7. The removal efficiency of dissolved organic matter (DOM) in EC between less than 1 kDa and more than 10 kDa augmented by 11~21% and 16% respectively compared to the CC process. The removal efficiency of hydrophobic and hydrophilic organic matter proved to be increased by 27~38% and 11~15% respectively. In conclusion, the most effective coagulant relating to EC for Nakdong River water was proved to be $FeCl_3$ followed by PSOM, PAC and alum in order.

The Treatment of Heavy Metal Hydroxides by Crossflow-Microfiltration (정밀여과에 의한 중금속수산화물의 처리)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.151-165
    • /
    • 2002
  • In the treatment of the wastewater containing metals($Cu^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Cr^{3+}$) by using batch precipitation and flocculation followed by membrane filtration, permeate flux and removal efficiency were investigated according to by the effect of pH and coagulants, and the type of membranes used and pore size. It was found that it is most effective to use $0.45{\mu}m$-polysulfone membrane and coagulant(PAC) at the conditions of the pH of 10.0~10.5 for the case of copper containing wastewater, $0.1{\mu}m$-PVDF membrane and coagulant(PAC) at the conditions of the pH of 10.0~10.5 for the case of zinc containing wastewater, $0.1{\mu}m$-PVDF membrane and coagulant at the conditions of the pH of 11.0~11.5 for the case of nickel containing wastewater, $0.2{\mu}m$ membrane and coagulant at the conditions of the pH of 8.0~8.5 for the case of chromic containing wastewater, and $0.2{\mu}m{\sim}0.45{\mu}m$ membrane and coagulant at the conditions of the pH of 11.0~11.5 for the case mixture wastewater. The permeate flux could higher as to be used coagulants except for the case of copper containing wastewater.

  • PDF

Dissolution Characteristics of Magnesite Ore in Hydrochloric Acid Solution and Removal of Impurity (마그네사이트 광석(鑛石)의 염산용해(鹽酸熔解) 특성(特性) 및 불순물(不純物) 제거)

  • Eom, Hyoung-Choon;Park, Hyung-Kyu;Kim, Chul-Joo;Kim, Sung-Don;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2009
  • Dissolution characteristics of magnesite ore in hydrochloric acid solution and removal of impurity were investigated. The dissolution yield increased with increasing temperature and with decreasing particle size. The optimum conditions for dissolution were found to be reaction period of 120 min, reaction temperature of $80^{\circ}C$ and mean particle size of 100. Under optimal dissolution condition the extraction of Mg was 98%. It was found that most of Si and Al exist in the residue, and they can be removed by filtering. Dissolved impurity ions were precipitated as metal hydroxides by pH adjustment. Polymers were used as coagulants for metal hydroxides and the suitable coagulant dosage was 1mg/100ml of non-ionic polymer.

Physicochemical Properties of a Biopolymer Flocculant Produced from Bacillus subtilis PUL-A (Bacillus subtilis PUL-A로부터 생산된 Biopolymer 응집제의 물리화학적 특성)

  • Ryu, Mi-Jin;Jang, Eun-Kyung;Lee, Sam-Pin
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.203-209
    • /
    • 2007
  • Soybean milk cake (SMC) was used for the solid-state fermentation by Bacillus subtilis PUL-A isolated from soybean milk cake. In the presence of 5% glutamate the maximum production of biopolymer (59.9 g/kg) was performed by fermentation at $42^{\circ}C$ for 24 hr. The recovered biopolymer was consisted of 87% $\gamma$-polyglutamic acid with molecular weight of $1.3{\times}10^6$ dalton and other biopolymer. The biopolymer solution showed the great decrease in consistency below pH 6.0, regardless of the molecular weight of PGA. Biopolymer solution has a typical pseudoplastic flow behavior and yield stress. The consistency of biopolymer solution was greatly decreased by increasing heating time and temperature in acidic condition compared to the alkaline condition. In kaolin clay suspension, the flocculating activity of biopolymer was the highest value with 15 mg/L biopolymer and 4.5 mM $CaCl_2$, but decreased greatly with $FeCl_3$. The flocculating activity of biopolymer was maximum at pH5, but decreased drastically by heating at $60{\sim}100^{\circ}C$. In particular, biopolymer with native PGA showed the efficient flocculating activity compared to that of modified biopolymer containing low molecular weight of PGA.

The Production of Biopolymer by Zoogloea ramigera (Zoogloea ramigera에 의한 생물고분자 생산에 관한 연구)

  • 안대희;권해수정윤철
    • KSBB Journal
    • /
    • v.7 no.3
    • /
    • pp.166-171
    • /
    • 1992
  • Zoogloea ramigera 115 was cultured for biopolymer production and its bioflocculant usages. Cultural conditions of the organism were examined with regard to high production of the microbial polysaccharide. The most suitable medium was found to contain glucose as a carbon source, $NaNO_3$ as a nitrogen source, and yeast extract as an organic nutrient. The initial pH of 6.0 proved to optimal. The biopolymer was extracted effectively using ultrasonication and high speed centrifugation, followed by propanol addition. Jar test results indicate that the polysaccharide produced by the organism is an effective flocculant.

  • PDF

Production of Bioflocculant by Agrobacterium sp. KF-67 (Agrobacterium sp. KF-67에 의한 미생물 응집제 생산)

  • 정준영;김교창;도대홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.295-301
    • /
    • 1997
  • Among 120 microorganisms isolated from soil, KF-67 was the best producer of flocculant and was examined for flocculating ability in the kaolin clay and CaCl2 suspension. KF-67 was identified to be a species belong to the genus Agrobacterium sp. The influence of components of the culture medium for flocculant production by Agrobacterium sp. KF-67 was studied. The favorable carbon and inorganic nitrogen source for production of the flocculant were glucose and NH4NO3 and their addition concentrations were 2% and 0.1%, respectively. Addition of the organic nitrogen such as yeast extract, peptone and inorganic salt such as CaCO3 significantly increased the production of flocculant. These result indicated that the production of flocculant by Agrobacterium sp. was significantly affected by both organic nitrogen and inorganic salt. The components of the optimum culture medium were 2% glucose, 0.1% NH4NO3, 0.01% yeast extract, 0.01% peptone, 0.04% CaCO3, 0.03% NaCl in initial pH 7.5 when cultured with rotary shaker controlled at 3$0^{\circ}C$ and 120 rpm. Under the optimum culture medium, flocculant production was highly improved about 76% than that isolation medium.

  • PDF

Optimization of Hybrid Process of(Chemical Coagulation, Fenton Oxidation and Ceramic Membrane Filtration) for the Treatment of Reactive Dye Solutions (반응성 염료폐수 처리를 위한 화학응집, 펜톤산화, 세라믹 분리막 복합공정의 최적화)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Lee, Byung-Hwan;Kim, Tak-Hyun;Lee, Jin-Won;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 2006
  • This study investigated the effects of hybrid process(chemical coagulation, Fenton oxidation and ceramic UF(ultrafiltration)) on COD and color removals of commercial reactive dyestuffs. In the case of chemical coagulation, the optimal concentrations of $Fe^{3+}$ coagulant for COD and color removals of RB49(reactive blue 49) and RY84(reactive yellow 84) were determined according to the different coagulant dose at the optimal pH. They were 2.78 mM(pH 7) in RB49 and 1.85 mM(pH 6) in RY84, respectively. In the case of Fenton oxidation, the optimal concentrations of $Fe^{3+}\;and\;H_2O_2$ were obtained. Optimal $[Fe^{2+}]:[H_2O_2]$ molar ratio of COD and color removals of RB49 and RY84 were 4.41:5.73 mM and 1.15:0.81 mM, respectively. In the case of ceramic UF, the flux and rejection of supernatant after Fenton oxidation were investigated. After ceramic UF for 9 hr, the average flux of RB49 and RY84 solutions were $53.4L/m^2hr\;and\;67.4L/m^2hr$ at 1 bar, respectively. In addition, the permeate flux increased and the average flux recovery were 98.5-99.9%(RB49) and 91.0-97.3%(RY84) according to adopting off-line cleaning(5% $H_2SO_4$). Finally, COD and color removals were 91.6-95.7% and 99.8% by hybrid process, respectively.