• Title/Summary/Keyword: 최적 설계 인자

검색결과 364건 처리시간 0.029초

A Study on Inflow Rate According to Shape of Dual Structure Perforated Pipe Applied to Seawater Intake System (해수취수시스템에 적용된 2중구조 유공관의 형태에 따른 취수효율에 대한 연구)

  • Kim, Sooyoung;Lee, Seung Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제17권6호
    • /
    • pp.721-728
    • /
    • 2016
  • 97% of water on earth exists in the form of seawater. Therefore, the use of marine resources is one of the most important research issues at present. The use of seawater is expanding in various fields (seawater desalination, cooling water for nuclear power plants, deep seawater utilization, etc.). Seawater intake systems utilizing sand filters in order to take in clean seawater are being actively employed. For the intake pipe used in this system, assuring equal intake flows through the respective holes is very important to improve the efficiency of the intake and filtering process. In this study, we analyzed the efficiency of the dual structure perforated pipe used in the seawater intake system using 3D numerical simulations and the inflow rate according to the gap of the up holes. In the case of decreasing gaps in the up holes toward the pipe end, the variation of the total inflow rate was small in comparison with the other cases. However, the standard deviation of the inflow rate through the up holes was the lowest in this case. Also, stable flow occurred, which can improve the efficiency of the intake process. In the future, a sensitivity analysis of the various conditions should be performed based on the results of this study, in order to determine the factors influencing the efficiency, which can then be utilized to derive optimal designs suitable for specific environments.

Application and its Reinforcing Effect of Soil Nailed-drilled Shafts (쏘일 네일(soil nail)로 보강된 현장타설말뚝의 적용성 및 보강효과 분석)

  • 김병철;이대수;김대홍;정상섬;김대학
    • Journal of the Korean Geotechnical Society
    • /
    • 제20권5호
    • /
    • pp.87-98
    • /
    • 2004
  • In this study reinforcing effect of soil nailed-drilled shafts subjected to axial and lateral loads was evaluated. Special attention was given to the reinforcing effects of soil nails placed from the drilled shafts to surrounding weathered- and soft-rocks based on model tests, numerical analyses and field tests. The model tests and numerical analyses are conducted to analyze the reinforcing effect of various conditions of number, inclination, position and length. The results of 1/40 scale model tests and numerical analyses show that as the number of reinforcing level increases, the incremental effect of reinforcement tends to increase, whereas the reinforcing effect on relative position is negligible. In addition there is a reinforcing effect as the inclination angle increase up to 30 degrees. Based on the results of tensile load tests, soil nailed-drilled shaft has a considerably smaller settlement to reach the ultimate level compared with the result of un-reinforced drilled shafts. For compression tests, there is a reinforcing effect of about 200% measured.

A Study on the Experience Design Construction and Its Application Model (경험디자인의 구성과 적용 모형에 관한 연구)

  • 윤세균;김태균;채승진
    • Archives of design research
    • /
    • 제16권4호
    • /
    • pp.289-298
    • /
    • 2003
  • The 21st century could be called the age of Experience Economy associated with the importance to external and internal experience of product users. It needs the understanding of customer's needs in new point of view. In the area of design development, it requires the extensive application of experience from traditional method that was based on the style and usability to more advanced concept. To correspond to these changes, we need to explore new customer's value system for knowledge-information design and systematic approaches to experience system. The purpose of this research is to define the concept of 'experience' newly in the importance side of customer's life, form a clear definition of experience design and present the model of application system. Theoretical frameworks of this research are based on the Empiricism and John Dewey's theory. By applying these frameworks make dear the concept of experience concept and reanalysis the meaning and style in the perspective of design. In this process, we can extract the main factors that inducing the experience, create new application system and model again to the field of design. Application model can creates various experiences through supplying different experience style and factors for customer, make customer realize experience object. Experience designs offer optimal experience to users by making a plan and design experience to user's goal.

  • PDF

Basic Analysis of Heat and Mass Transfer Characteristics of Tubular Membrane Humidifier for Proton Exchange Membrane Fuel Cell (이온교환막 연료전지용 원통형 막 가습기의 열 및 물질전달특성 기초 연구)

  • Bae, Ho-June;Ahn, Kook-Young;Lee, Young-Duk;Kang, Sang-Kyu;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제35권5호
    • /
    • pp.473-480
    • /
    • 2011
  • The proton exchange membrane (PEM) fuel cell system is critically dependent on the humidity, which should be properly maintained over the entire operating range. A membrane humidifier is used for the water management in the PEMFC because of the membrane humidifier's reliable performance and zero parasitic power loss. In the PEMFC system, the membrane humidifier is required to provide appropriate humidity for the design point of the fuel cell. Although the performance of the fuel cell depends on the performance of the humidifier, few studies have provided a systematic analysis of the humidifier. We carry out an experimental analysis of the membrane humidifier using a vapor condensation bottle. The dry air pressure, water flow temperature, and air flow rate were chosen as the operating parameters. The results show that the time constant for the dynamic response of the membrane humidifier is relatively short, but additional analysis should be carried out.

A Study on the Conceptual Development for a Deep Geological Disposal of the Radioactive Waste from Pyro-processing (파이로공정 발생 방사성폐기물 심지층 처분을 위한 개념설정 연구)

  • Lee, Jong-Youl;Lee, Min-Soo;Choi, Heui-Joo;Bae, Dae-Seok;Kim, Kyeong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제10권3호
    • /
    • pp.219-228
    • /
    • 2012
  • A long-term R&D program for HLW disposal technology development was launched in 1997 in Korea and Korea Reference disposal System(KRS) for spent fuels had been developed. After then, a recycling process for PWR spent fuels to get the reusable material such as uranium or TRU and to reduce the volume of radioactive waste, called Pyro-process, is being developed. This Pyro-process produces several kinds of wastes including metal waste and ceramic waste. In this study, the characteristics of the waste from Pyro-process and the concepts of a disposal container for the wastes were described. Based on these concepts, thermal analyses were carried out to determine a layout of the disposal area of the ceramic wastes which was classified as a high level waste and to develop the disposal system called A-KRS. The location of the final repository for A-KRS is not determined yet, thus to review the potential repository domains, the possible layout in the geological characteristics of KURT facility site was proposed. These results will be used in developing a repository system design and in performing the safety assessment.

Study of the Washing Condition for High Quality of Solar Salt (고품질 천일염 생산을 위한 세정 조건 연구)

  • Han, Jae Woong;Kim, Hoon;Lee, Hyo-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권8호
    • /
    • pp.298-303
    • /
    • 2020
  • This study examined the washing conditions for high-quality solar salt. The salinity of the washing water was set to 5 % to prevent yield loss, and the temperatures of the washing water were 5, 10, 17.5, and 20 ℃. After washing the solar salt, the moisture content, salinity, insoluble matter, and sandy powder were measured from the solar salt. In addition, the color properties, L*[lightness], a*[redness], b*[yellowness], and yield were measured. The moisture content of the salt showed a tendency to increase when the temperature of the washing water was above 10 ℃, and the salinity and yield tended to decrease as the temperature of the washing water was high. The amount of insoluble matter decreased with decreasing temperature of the washing water. In the case of sandy powder, the highest value was 0.67 % at a washing water temperature of 5 ℃, and the value was 0.57 % under the other temperature conditions. Regarding the color properties, the b* [yellowness] of the color of the solar salt increased when the washing water temperature was high. This appeared to decrease the appearance quality. According to the above results, a washing water temperature above 10 ℃ was appropriate. The development of design factors of a high-quality solar salt production system is expected with experiments to define the drying conditions after the washing process.

A Study on the Treatment of Landfill Leachate using Membrane and Evaporator (Lab Test) (분리막과 증발기를 이용한 매립지 침출수 처리에 관한 연구 (Lab test))

  • Kang, Shin-Gyung;Park, Yung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제22권12호
    • /
    • pp.2125-2134
    • /
    • 2000
  • This research was to develope the economical treatment processes of the landfill leachate to meet the legal discharge standards. To achieve this purpose, experiments were conducted in laboratory to choose the optimum process and to obtain the design factors before a pi!ot-scale test. The concept of the process developing in this research was using the reverse osmosis system. The submerged membrane bio-reactor was used to achieve pre-treatment of reverse osmosis system and the concentrate was treated by evaporator with land fill gas as a fuel. The results of the research showed that SS, $BOD_5$, $COD_{cr}$, $NH_4{^+}-N$ and T-N were removed 99.0%, 43.0%, 12.9%, 48.5% and 18.7% respectively in the submerged membrane bio-reactor. The reverse osmosis system could remove $BOD_5$, $COD_{cr}$, $NH_4{^+}-N$ and T-N as an efficiency of97.5%, 97.6%, 79.7% and 85.4% respectively. The evaporator could remove $COD_{cr}$, $NH_4{^+}-N$ and T-N as an efficiency of 90.5%, 50.6% and 63.3% respectively. However the condensed water of the evaporator was not satisfied the legal standard and should be treated in reverse osmosis with the pre-treated leachate.

  • PDF

반응표면 분석에 의한 Trichoderma sp. FJ1의 cellulolytic enzymes 생산의 최적화

  • Kim, Gyeong-Cheol;Yu, Seung-Su;O, Yeong-A;Lee, Yong-Un;Jeong, Seon-Yong;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.453-456
    • /
    • 2002
  • The production conditions of cellulolytic enzymes by Trichoderma sp. FJ1, were optimized using response surface analysis. The culture factors which largely affected to the production of enzymes such as cultivation time, carbon source concentration, nitrogen source concentration, and composition ratio of carbon sources were employed. Optimized conditions of the factors above to each cellulolytic enzyme production was as follow: CMCase production was obtained in the conditions of cultivation time of 5.4 days, 3.5% of carbon source concentration, 0.6% of nitrogen source concentration, and 52:48 (avicel:CMC) of composition ratio of carbon sources, respectively, xylanase appeared in the conditions of 5.3 day, 3.5%, 0.8%, and 54:46, respectively, and ${\beta}-glucosidase$ were 7.0 day, 5.0%, 1.0%, and 83:17, respectively, and avicelase were 6.5 day, 4.0%, 0.9%, and 64:36, respectively. The activities of CMCase, xylanase, ${\beta}-glucosidase$, and avicelase predicted by the response surface methodology were 33.5, 52.6, 2.88, and 1.84 U/ml, respectively, and ${\beta}-glucosidase$ was enhanced up to 74% compared to that obtained in the experimental conditions.

  • PDF

Biocompatibility and Surface Characteristics of (Si,Mn)-HA Coated Ti-Alloy by Plasma Electrolytic Oxidation (PEO법으로 (Si,Mn)-HA 코팅된 치과 임플란트용 Ti 합금의 생체적합성 및 표면특성)

  • Gang, Jeong-In;Son, Mi-Gyeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.83-83
    • /
    • 2017
  • 생체재료의 표면은 이식과 동시에 생체계면의 역할을 하게 되어, 일련의 생물학적 반응이 시작되고 진행되는 중요한 장소가 된다. 초기에 생체계면에서 일어나는 단백질 흡착이나 염증반응을 비롯한 생물학적 반응들은 궁극적으로 임플란트의 성패를 좌우할 만큼 중요하다. 골융합을 개선하기 위한 다른 방법으로 생체불활성의 타이타늄 (Ti)과 골조직의 능동적인 반응을 이루기 위해 생체활성 표면을 부여함으로서 계면에서의 골형성 반응을 증진시키는 방법이 이용된다. 생체불활성의 Ti과 Ti합금은 골조직과 직접적인 결합을 이루지 못하므로, 골조직과의 반응을 향상하기 위해 여러 종류의 생체활성 재료를 코팅하는 방법이 연구되어 왔고, 이 중 생체의 변화와 가장 유사한 하이드록시아파타이트 코팅이 가장 대중적인 방법으로 사용되었으며 이는 초기 골형성을 촉진하는 것으로 알려졌다. 치과용 임플란트의 표면형상과 화학조성이 골 융합에 영향을 미치는 가장 중요한 인자이므로 최근의 연구동향은 이들 두 가지 표면특성을 결합함으로서 결과적으로 최적의 골세포반응을 유도하고, 골융합 후 골조직과의 micromechanical interlocking에 의해 임플란트의 안정성에 중요한 역할을 하는 마이크론 단위의 표면조도와 표면 구조를 유지하면서, 부가적으로 골 조직 반응을 능동적으로 개선할 수 있는 생체활성 성분을 부여하여 골 융합에 상승효과를 이루기 위한 표면처리법에 관해 많은 연구가 요구되어지고 있다. 따라서 골을 구하는 원소인 망간과 실리콘으로 치환된 하이드록시아파타이트를 플라즈마 전해 산화법으로 코팅하여 세포와 잘 결합할 수 있는 표면을 제공함으로써 골 융합과 치유기간을 단축시킬 수 있을 것으로 사료된다. 실험방법은 시편은 치과 임플란트 제작 합금인 Ti-6Al-4V ELI disk (grade 5, Timet Co., USA; diameter, 10 mm, thickness, 3 mm)이며, calcium acetate monohydrate, calcium glycerophosphate, manganese(II) acetate tetrahydrate, sodium metasilicate을 설계조건에 따라 혼합 제조된 전해질 용액을 이용하여 플라즈마 전해 산화법으로 표면 코팅을 실시하였다. 각 시편의 플라즈마 전해시 전압은 280V로 인가하였고, 전류밀도는 70mA로 정전류를 공급하여 해당 인가전압 도달 후 3분 동안 정전압 방식을 유지하였다. 코팅된 피막 표면을 주사전자현미경과 X-선 회절분석을 통하여 미세구조 및 결정상을 관찰하였다. 또한 코팅된 표면의 생체활성 평가는 정량적으로 평가하기 위해 동전위시험과 AC 임피던스를 통하여 시행하였다. 분극거동을 확인하기 위해 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하여 구강 내 환경과 유사한 $36.5{\pm}1^{\circ}C$의 0.9 wt.% NaCl에서 실시하였다. 전기화학적 부식 거동은 potentiodynamic 방법으로 조사하였고 인가전위는 -1500 mV에서 2000 mV까지 분당 1.67 mV/min 의 주사속도로 인가하여 시험을 수행하였다. 임피던스 측정은 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하였으며, 측정에 사용한 주파수 영역은 10mHz ~ 100kHz 까지의 범위로 하여 조사하였고 ZSimWin(Princeton applied Research, USA) 소프트웨어를 사용하여 용액의 저항, 분극 저항 값을 산출하였다. 망간의 함량이 증가할수록 불규칙한 기공을 보였으며, 실리콘은 $TiO_2$ 산화막 형성을 저해하는 경향을 확인할 수 있었다. 단독으로 표면을 처리한 경우보다 두 가지 원소를 이용해 복합 표면처리를 시행한 경우가 내식성이 좋아 임플란트과의 골 유착에 긍정적인 영향을 미칠 것으로 사료된다.

  • PDF

A Study on the Basic Characteristics of In-situ Soil Flushing Using Surfactant (계면활성제를 이용한 원위치 토양세정 기법 적용을 위한 기초 특성 연구)

  • 최상일;소정현;조장환
    • Journal of Soil and Groundwater Environment
    • /
    • 제7권4호
    • /
    • pp.87-91
    • /
    • 2002
  • Lab scale batch and column tests were performed to investigate the treatability of petroleum contaminated soil using the in-situ soil flushing method. The pyrex column (4.5$\times$25 cm) was used to investigate optimal washing agent, surfactant concentration, mixing ratio, and inlet velocity. The miked surfactant of $POE_{14}$ and SDS were determined as ideal systems for the batch tests. From the results of preliminary tests, mixed surfactant was found to be more harmful for microorganisms. So $POE_{5}$ and $POE_{14}$ were chosen as the surfactant system for the batch study. The washing efficiency for the diesel contaminated soil was increased until 1 %, and decreased after l %. When applied as selected mixed surfactant, the ideal mixed ratio was recognized as 1:1. Therefore we selected miked surfactant $POE_{5}$ and $POE_{14}$, surfactant concentration 1%, and mixed ratio 1:1 for the remediation of diesel contaminated soil. In column tests, the total removal efficiency was improved as the flux of washing agent was increased. At the same pore volume, small flux showed better removal efficiency.