• 제목/요약/키워드: 최적 분류

검색결과 1,054건 처리시간 0.027초

특허 분류를 위한 효과적인 자질 선택 (Effective Feature Selection for Patent Classification)

  • 정하용;황금하;신사임;최기선
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.670-672
    • /
    • 2005
  • 자질 선택은 문서 분류와 같이 않은 자질을 사용하는 지도식 기계학습에 관한 연구에서 날로 중요성이 커지고 있다. 특히 특허문서 분류와 같은 작업은 기존의 문서 분류보다도 훨씬 많은 자질과 분류 범주를 가지기 때문에 전체 문서의 특징을 드러내는 적절한 부분집합을 선택해 학습하는 것이 절실하다. 전통적인 자질선택 방법은 필터라는 방법으로서 빠르지만 임계값을 정하기가 어렵다는 문제가 있다. 한편 최근에 많이 연구되는 래퍼는 일반적으로 필터보다. 좋은 성능을 보이지만 자질의 개수가 많을수록 시간이 오래 걸린다는 단점이 있다. 본 연구에서는 필터와 래퍼를 상호 보완적으로 결합하여 최적의 필터를 자동적으로 찾는 래퍼를 제안한다. 실험 결과, 제안한 방법이 효과적으로 자질 집합을 선택하는 것을 확인할 수 있었다.

  • PDF

역전파 신경망과 통계적 처리를 이용한 공정 데이터 분류 (Process Data Classification Using Backpropagation Neural Network and Statistical Processing)

  • 김성모;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2743-2745
    • /
    • 2002
  • 역전파 신경망과 데이터분포 특징을 고려한 새로운 알고리즘을 개발하였으며, 이를 플라즈마 데이터의 분류에 응용하였다. 데이터 분포는 통계적인 평균치와 표준편차를 이용하여 특징지었으며, 바이어스인자를 이용하여 9 종류의 데이터를 발생하였다. 각 데이터에 대하여 은닉층의 뉴런수를 변화시키며, 바이어스와 뉴런수에 따른 모델성능을 평균학습시간 (ATT), 평균예측정확도 (APA), 최적예측정확도 (BPA), 그리고 분류정확도 (CA) 측면에서 세분하여 분석하였다. ATT와 APA에 대해서는 최적화된 학습인자와 데이터 분류인자가 일치하였고, BPA와 CA는 일치하지 않았다. 두 인자간의 상호작용을 동시에 최적화함으로써 완전 분류를 달성하였다.

  • PDF

효과음 자막 생성을 위한 딥러닝 기반의 다중 사운드 분류 (A Multiclass Sound Classification Model based on Deep Learning for Subtitles Production of Sound Effect)

  • 정현영;김규미;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.397-400
    • /
    • 2020
  • 본 논문은 영화에 나오는 효과음을 자막으로 생성해주는 자동자막생성을 제안하며, 그의 첫 단계로써 다중 사운드 분류 모델을 제안하였다. 고양이, 강아지, 사람의 음성을 분류하기 위해 사운드 데이터의 특정벡터를 추출한 뒤, 4가지의 기계학습에 적용한 결과 최적모델로 딥러닝이 선정되었다. 전처리 과정 중 주성분 분석의 유무에 따라 정확도는 81.3%와 33.3%로 확연한 차이가 있었으며, 이는 복잡한 특징을 가지는 사운드를 분류하는데 있어 주성분 분석과 넓고 깊은 형태의 신경망이 보다 개선된 분류성과를 가져온 것으로 생각된다.

Encoder Layer를 이용한 의도 분류 성능 비교 (Comparing the Performances of Intent Classifications by Encoder Layer)

  • 안혁주;김혜영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.410-413
    • /
    • 2021
  • 본 논문에서는 분류 모델의 주류로 사용되고 있는 Encoder 기반 사전학습 모델(BERT, ALBERT, ELECTRA)의 내부 Encoder Layer가 하부 Layer에서는 Syntactic한 분석을 진행하고 상부 Layer로 갈수록 Semantic 한 분석을 진행하는 점, Layer가 구성됨에 따라 Semantic 정보가 Syntactic 정보를 개선해 나간다 점에 기반한 기존 연구 결과를 바탕으로 Encoder Layer를 구성함에 따라 어떻게 성능이 변화하는지 측정한다. 그리고 의도 분류를 위한 학습 데이터 셋도 분류하고자 하는 성격에 따라 Syntactic한 구성과 Semantic한 구성을 보인다는 점에 착안하여 ALBERT 및 ELECTRA를 이용한 의도 분류 모델을 구축하고 각 데이터 셋에 맞는 최적의 Encoder Layer 구성을 가지는 모델을 비교한 결과, 두 데이터 셋 간에 다른 Layer 구성을 보이는 점과 기존 모델보다 성능이 향상됨을 확인하였다.

  • PDF

패턴 인식을 위한 유전 알고리즘의 개관 (Review on Genetic Algorithms for Pattern Recognition)

  • 오일석
    • 한국콘텐츠학회논문지
    • /
    • 제7권1호
    • /
    • pp.58-64
    • /
    • 2007
  • 패턴 인식 분야에는 지수적 탐색 공간을 가진 최적화 문제가 많이 있다. 이를 해결하기 위해 부 최적해를 구하는 순차 탐색 알고리즘이 사용되어 왔고, 이들 알고리즘은 국부 최적점에 빠지는 문제점을 안고 있다. 최근 이를 극복하기 위해 유전 알고리즘을 사용하는 사례가 많아졌다. 이 논문은 특징 선택, 분류기 앙상블 선택, 신경망 가지치기, 군집화 문제의 지수적 탐색 공간 특성을 설명하고 이를 해결하기 위한 유전 알고리즘을 살펴본다. 또한 향후 연구로서 가치가 높은 주제들에 대해 소개한다.

소프트웨어 비용산정을 위한 SVM의 파라미터 선정과 응용에 관한 연구 (A Study on the Selection of Parameters and Application of SVM for Software Cost Estimation)

  • 권기태;이준길
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.209-216
    • /
    • 2009
  • 소프트웨어 개발 초기 단계에서 소프트웨어 개발비용을 정확하게 예측하는 것은 프로젝트의 성패를 결정짓는 중요한 요소이다. 본 논문에서는 서포트 벡터 머신을 이용하여 소프트웨어 개발비용을 추정하고자 한다. 서포트 벡터 머신은 벡터 공간에서 선형 및 비선형의 경계면을 찾아 입력 데이터를 분류하는 방법으로서 분류 문제에 효과적이다. 하지만 사용자정의에 의한 파라미터에 의존적이어서 최적의 파라미터를 선택하는 어려움이 있다. 본 연구에서는 서포트 벡터 머신에서 사용하는 파라미터 선택을 위한 개선된 방법을 제안하고, 이러한 최적의 파라미터를 가진 서포트 벡터 머신을 이용하여 소프트웨어 개발비용을 추정하였다. 본 연구의 결과 기존 소프트웨어 비용산정 기법에 비해 향상된 결과를 나타내었다.

최대 개념강도 인지기법을 이용한 데이터베이스 자동선택 방법에 관한 연구 (A Study on Automatic Database Selection Technique Using the Maximal Concept Strength Recognition Method)

  • 정도헌
    • 정보관리학회지
    • /
    • 제27권3호
    • /
    • pp.265-281
    • /
    • 2010
  • 본 연구에서 제안하는 기법은 최대 개념강도 인지기법(Maximal Concept-Strength Recognition Method: MCR)이다. 신규 데이터베이스가 입수되어 자동분류가 필요한 경우에, 기 구축된 여러 데이터 베이스 중에서 최적의 데이터베이스가 어떤 것인지 알 수 없는 상태에서 MCR 기법은 가장 유사한 데이터베이스를 선택할 수 있는 방법을 제공한다. 실험을 위해 서로 다른 4개의 학술 데이터베이스 환경을 구성하고 MCR 기법을 이용하여 최고의 성능값을 측정하였다. 실험 결과, MCR을 이용하여 최적의 데이터베이스를 정확히 선택할 수 있었으며 MCR을 이용한 자동분류 정확률도 최고치에 근접하는 결과를 보여주었다.

GIS를 이용한 해안단구 지형면 분류 기법 연구 - 감포지역을 사례로 - (Development of the GIS Method for Extracting a Specific Geomorphic Surface of Coastal Terrace at Gampo Area, Southeastern Coast in Korea)

  • 박한산;윤순옥;황상일
    • 대한지리학회지
    • /
    • 제36권4호
    • /
    • pp.458-473
    • /
    • 2001
  • 지형면 분류도는 지형학 연구에 있어서 가장 기본적인 자료이다 최근가지 이루어지고 있는 항공사진, 지형도 및 현지조사에 의한 지형면 분류 방법은 많은 시간과 높은 숙련도를 요구하며, 항공사진 획득에도 어려움이 있다. 현재 우리나라는 수치지도가 거의 완성되었으므로. GIS를 이용하여 해안단구 지형이 갖는 해발고도와 경사도의 특성을 정량적으로 분석하면, 적합한 지형면을 찾아낼 수 있다. 본 연구에서는 이미 전통적인 방법에 의해 해안단구 연구가 다수 이루어진 한국 남동해안 경주시 감포읍 지역에서, GIS를 이용하여 보다 효율적이고 객관적인 해안단구 지형면 분류 기법을 제시하였다. 이를 위하여 해안단구 지형면 분류 과정을 설계하였으며, 지형면 분류에 적합한 분류요인을 선정하고, 최적분류기준을 추출하여 지형면을 분류한 후, 부합을 및 오류율을 통하여 이러한 방법에 대한 효용성과 문제점을 검토하였다.

  • PDF

다중 분류기 통합을 위한 퍼지 행위지식 공간 (Fuzzy Behavior Knowledge Space for Integration of Multiple Classifiers)

  • 김봉근;최형일
    • 인지과학
    • /
    • 제6권2호
    • /
    • pp.27-45
    • /
    • 1995
  • 본 논문에서는 다중 분류기의 통합을 위해 퍼지 행위지식 공간을 구성하고 이를 이용하는 방법을 제안한다.기존의 행위지식 공간은 각 분류기들이 서로 독립적일 필요가 없고 적응적 학습이 가능한 것으로 단지 하나의 클래스 레이블만 을 출력하는 분류기들의 통합에 가장 최적의 방법으로 알려졌다.그러나 행위지식 공간은 각 분류기가 출력하는 클래스 레이블에 대한 측정값과 경험적 지식을 통합과정에 반영하기 어렵다는 문제점을 갖고 있다.이러한 행위지식 공간의 문제점을 해결하기 위해 본 논문에서는 퍼지개념을 이용한 퍼지 행위지식 공간을 정의하고 이를 다중 분류기의 통합에 적용하기 위한 방법을 기술한다.또한,퍼지 행위지식 공간의 유용성을 증명하기 위해 각 분류기로 부터 얻어진 클래스 레이블들과 이에 관련된 측정값을 포함하는 분류결과들의 통합에 적용된 실험결과를 기술한다.

  • PDF

핵형 분류를 위한 퍼지 멤버쉽 함수의 처리 (Computing of the Fuzzy Membership Function for Karyotype Classification)

  • 엄상희;남재현
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권6호
    • /
    • pp.1-8
    • /
    • 2006
  • 많은 연구자들이 자동 염색체 핵형 분류와 해석을 연구하고 있다. 현미경상의 이미지를 개개의 염색체로 자동 분류하기 위해서는 이미지 전처리 핵형 분류기 구현 등의 세부 절차가 필요하다. 이미지 전처리에서는 개개의 염색체 분리, 잡음 제거, 특징 파라미터 추출을 진행한다. 추출된 형태학적 특징 파라미터는 동원체 지수, 상대 길이비, 상대 면적비이다. 본 논문에서는 인간 염색체 핵형 분류를 위하여 퍼지 분류기가 사용되어졌다. 추출된 형태학적 특징 파라미터가 퍼지 분류기의 입력 파라미터로 사용되었다. 우리는 개개의 염색체 그룹에 대한 최적 퍼지 분류기를 위하여 멤버쉽 함수를 선택하는 것을 연구하였다.

  • PDF