본 논문은 장기적 및 단기적 관점에서 도시내 도로의 최적 혼잡통행료를 추정하는 방법론을 구축하고, 이를 서울시의 주요 도로에 적용하였다. 장기적 관점의 최적 혼잡통행료는 도로 건설 유지비용과 통행자비용을 합한 총비용을 극소화하는 최적 교통량-용량 비율을 구한 다음 추정된다. 반면 단기적 관점의 최적 혼잡통행료는 통행시간-교통량 함수와 개별수단선택모형을 이용해 공급-수요 균형점을 구한 다음 추정된다. 도시고속도로인 서부간선도로에 대한 장기적 관점의 분석 결과 최적 교통량-용량비율과 승용차-km당 최적 혼잡통행료는 1.35와 503원인 반면, 도시간선도로인 미아로에 대한 단기적 관점의 분석 결과는 1.31과 420원인 것으로 나타났다. 이러한 분석 결과는 어느 정도 할인율과 시간 가치에 영향을 받으나, 혼잡통행료를 부과하면 사회후생이 증가하는 것은 변함이 없는 것으로 나타났다.
본 연구는 조기 정신증 환자를 대상으로 포괄적인 간호중재를 제공함으로써 정신증 진행을 늦추고 정신기능의 불구를 줄여 사회적 기능이 최적으로 호전될 수 있도록 돕는 새로운 돌봄의 이론적 모형을 개발하기 위해 시도되었다. 본 연구에서는 조기 정신증 환자의 돌봄에 대한 이론적 모형을 구축하기 위해 1) 연구주제 및 자료 분석방법 결정, 2) 문헌탐색 및 분석대상 선택, 3) 자료 추출, 4) 예비모형 구축 및 타당도 검증의 단계를 적용하였다. 2000년대 이후 '조기 정신증 돌봄'에 대해 실시된 선행문헌중 본 연구대상에 선정된 19개 문헌에 대해 질적 메타분석를 실시하였다. 그 결과 일차 분석틀에서 개별 연구에 나타난 조기 정신증 돌봄 요인 51개를 추출하고 이를 21개의 중분류로 나누었으며 이차 분석틀에서 요인의 속성이 유사한 것끼리 모아 8개의 범주명을 제시하였다. 또한 돌봄 요인에 대한 범주명을 간호사와 환자가 건강과 관련된 어려움을 해결하는 대인관계에 초점을 둔 중범위 이론인 Peplau의 대인관계이론을 기틀로 하여 예비모형을 구축하였다. 본 연구는 지역사회 접근을 통해 조기 정신증 환자의 치료받지 않는 기간을 줄이고 개인의 발달기와 환경에 적합한 간호중재를 제공해 줌으로써 사회적 기능을 증진시킬 수 있는 돌봄 모형의 중요한 토대가 될 수 있다.
본 논문에서는 가우시안 혼합모형을 이용한 새로운 칼라 영상의 분할 알고리즘을 제안한다. 기존의 EM 알고리즘의 문제점인 국부적 최대값의 문제를 해결하기 위하여 최대 엔트로피의 원리를 이용하는 결정적 어닐링 EM 알고리즘을 소개하였고, 여러 색상들로 구성된 영상에 대하여 가우시안 혼합모형을 가정하였으며, 결정적 어닐링 EM 알고리즘을 사용하여 이들의 모수를 추정하는 방법을 알아보았다. 또한 혼합모형에 성분의 수를 자동으로 결정할 수 있는 방법을 제시하였으며 선택된 최적의 혼합모형을 사용하여 각 화소에 대한 사후확률을 계산하고 이들의 최대값을 이용하여 영상분할을 실시하였다. 결정적 어닐링 EM 알고리즘이 기존의 EM 알고리즘보다 혼합모형의 모수를 더 정확하게 추정한다는 것과 혼합모형의 성분의 수를 결정하는 제안된 방법의 성능을 실험결과를 통하여 고찰하였고, 또한 두 가지 실제 영상을 통하여 제안된 알고리즘이 기존의 알고리즘 보다 영상을 더 효율적으로 분할 할 수 있음을 보였다.
미지의 영역에서 작업을 수행하고자 하는 이동로봇은 주변의 지도가 없을 뿐만 아니라 자신의 위치도 알 수 없다. 이러한 환경의 극복을 위해 가장 많이 쓰이는 방법이 SLAM(Simultaneous Localization And Mapping)이다. SLAM 분야에서 가장 많이 쓰이는 방법은 EKF (Extended Kalman Filter) 기반의 SLAM이다. 최적의 센서 융합 기법이지만 odometeric error 등을 보상하기 위해서는 복잡한 과정이 점차 증가하게 된다. 사람은 SLAM 방식을 이용하여 낯선 장소에서 마음속의 지도를 쉽게 작성하지만 로봇의 경우 SLAM을 수행하는 것은 매우 어렵고 시간이 오래 걸린다는 단점이 생기는 것이 다. 이러한 단점의 보완을 위하여 본 논문에서는 대칭모형 SLAM(M-SLAM)을 제안한다. M-SLAM은 대칭에 사용할 모형을 미리 정하고 센서로 받아들인 데이터를 모형과 비교하여 대칭된 모형을 맵에 적용시켜서 작업의 양을 줄이는 방법이다. M-SLAM은 적은 특징점을 이용하여 선택된 대칭 도형과의 유사성 판별을 이용하는 방법이므로 특징점이 적은 거리센서에 사용하기 적합한 특성을 가지고 있다고 할 수 있다. 특징점이 적어도 된다는 장점은 SLAM의 시간을 크게 줄여 줄수 있다.
본 연구의 목적은 초등학교 1-4학년의 학교적응 변화유형을 분석하는 것이다. 이를 위해 한국아동패널 8차년도-11차년도 자료를 사용하여 잠재성장모형과 성장혼합모형 분석을 실시했다. 주요 결과로는 잠재성장모형 분석을 통해 선형모형을 최적 모형으로 선택하고, 성장혼합모형 분석을 통해 4개의 잠재계층 집단(고수준-유지, 저수준-유지, 저수준-증가, 고수준-감소)을 변화궤적으로 도출했다. 대부분이 고수준-유지 집단에 포함된 반면, 일부 아동이 저수준-유지, 저수준-증가, 고수준-감소의 순으로 분포됨을 알 수 있었다. 이에 우리는 초등학교 학교적응이 학년 상승에 따라 상이하게 변화하는 양상을 가진다는 본 연구결과를 토대로 학교와 가정에서 개별 아동의 학교적응 추이를 주의깊게 살펴보고 지원할 필요가 있음을 제안한다.
본 연구는 기후요인을 이용한 혼파초지 수량예측모형을 기초로 하여 시비, 파종 및 조성연차 요인을 단계적으로 적용하여 해석력이 높은 모형을 선정하는데 목적이 있다. 혼파초지 수량예측모형 구축 과정은 자료(풀사료 및 기상자료)수집, 가공, 분석 및 모형 구축의 순이었다. 여기서 수량예측모형은 기후, 시비, 파종 및 조성연차 요인을 고려하여 6가지를 구축하였으며, 해석력 및 풀사료 생산 이론 측면의 검토를 통해 최적의 모형을 선택하였다. 그 결과 기후, 시비 및 파종과 조성연차(조성연차의 그룹화) 요인을 고려한 Model VI이 선택되었다(해석력=53.8%). Model VI의 요인 별 해석력은 기후요인이 가장 크고(24.5%) 시비(17.8%), 파종(10.7%) 및 조성연차(0.8%) 요인의 순이었다. 그러나 건물수량과 하고일수 간에 나타난 정(+)의 상관관계는 지역별 및 적산변수 등의 관점에서 검토가 필요하다. 또한 시비량 및 파종량은 특정값에 집중적으로 분포하고 있어 이차항(Quadratic term)을 이용하여 적정 수준에 관한 연구가 요구된다.
총유기탄소(TOC)는 해양의 탄소순환 연구분야에서 직접적인 생물학적 지표로 이용되는 중요한 인자다. 가용한 TOC 자료가 상대적으로 화학적산소요구량(COD) 자료 보다 부족하기 때문에 COD 자료를 활용하여 TOC 자료를 추정할 수 있다. COD를 TOC 로의 변환 시 TOC 추정에 직접적으로 영향을 미치는 COD 관측자료에 포함된 이상자료의 탐지와 적절한 처리는 합리적이고 객관적으로 수행되어야 한다. 본 연구에서는 국내 연안해역에서 관측된 염분, COD 및 TOC 자료에 대한 최적회귀모형을 제시하였다. 최적회귀모형은 이상자료와 영향자료를 여러 가지 탐색방법으로 진단하여 제거 전 후의 자료 개수 변화, 변동계수 및 RMS 오차를 비교 및 분석하여 선택하였다. 연구수행 결과, Cook의 진단방법과 SIQR의 boxplot 방법을 조합한 방법이 가장 적절한 것으로 파악되었다. 최적 회귀 함수는 TOC(mg/L) = $0.44{\cdot}COD(mg/L)+1.53$ 이고, 결정계수는 0.47 정도로 나타났으며, RMS 오차는 0.85 mg/L이다. RMS 오차와 지레계수(leverage values)의 변동계수는 이상자료 제거 전에 비하여 각각 31%, 80%로 크게 감소되었다. 본 연구에서 제시된 방법을 통해 COD와 TOC 관측자료에 포함된 이상자료와 영향자료의 과도한 영향을 진단 및 제거하였기 때문에 보다 적절한 회귀곡선식을 제시할 수 있었다.
OFDM (Orthogonal Frequency Division Multiplexing) 전송방식의 장점은 높은 주파수 효율, RF간섭에 대한 강인성, 낮은 다중 경로 왜곡 등을 들 수 있다. 다중 사용자 OFDM의 채널용량을 확대하기 위해서는 사용자간의 부채널과 비트 할당의 효율적인 알고리즘을 개발하여야 한다. 본 연구에서는 다중 사용자의 전송요구량을 만족하는 최적 부채널 및 비트 할당 문제를 0-1 정수계획법 모형으로 형성하고, 원래 문제의 선형계획법 완화 (linear programming relaxation)문제를 dual-decomposition과 subgradient 알고리즘을 사용하여 해를 구하는 효과적인 알고리즘을 제시한다. 또한 dual-decomposition으로 구한 목적함수값은 원래 문제의 선형계획법 완화문제의 최적목적함수 간과 동일함을 증명하였다 모의실험을 통하여 다수의 문제에 대하여 원래 문제의 최적 목적항수값에 대한 dual-decomposition으로 구한 하한의 성능을 제시하였다. MQAM (M-ary Quadrature Amplitude Modulation)을 사용하고 3개의 독립적인 Rayleigh 다중 경로로 구성된 주파수 선택적 채널을 가정한 경우 MATLAB을 사용한 모의실험에서 0-1 정수계획 법으로 구한 최적해의 성능을 실험하였다.
광기록 정보저장장치에서 인코딩된 시퀀스의 DC-억압을 위해 Guided Scrambling 기법이 널리 사용된다. 후보 코드시퀀스 중 최적의 DC-억압 코드를 선택하기 위해 digital sum value (DSV)의 함수로 정의된 기준을 사용한다. 이 중 minimum DSV (MDSV), minimum squared weight (MSW), minimum threshold overrun (MTO) 등이 널리 사용된다. 본 연구에서는 MDSV, MSW, MTO 기준을 채택하는 GS 코딩 알고리즘과 동등한 정수계획법 모형을 제안한다. 개발된 MDSV 정수계획법 모형을 MaxMin 형태의 모형으로 확장하여 스크램블링 다항식과 제어 비트에 따른 MDSV GS 코딩의 최악 성능을 평가할 수 있는 모형을 개발하였다. 모의실험에서는 다수의 스크램블링 다항식 및 제어비트 조합에 대하여 MDSV 최악 성능을 계산하였다.
최근 많은 연구자와 실무자들이 모집단에 내재해 있는 여러 다른 그룹(class, segment)간의 이질성을 밝혀내고 객체들을 그룹별로 세분화하는 방법 중 하나로 잠재그룹 모델(Latent class model)을 고려하고 있다. 이 논문에서는 2000년도에 국립 암 센터에 접수된 한국 내 연령별 전립선암 사망자수 자료를 기반으로, 잠재그룹 포아송 모형을 이용하여 전립선암 환자의 연령에 따른 그룹화를 시도한다. 최우추정법 등 고전적 추론방법의 한계를 극복하기 위하여 Markov Chain Monte Carlo (MCMC) 방법을 도구로 한 베이지안 추정 방법을 제안한다. 제안된 베이지안 방법의 장점은 용이한 모수추정과 추정오차의 제공, 그리고 각 객체의 소속그룹의 판정과 이에 따르는 오차, 즉, 객체의 각 군집에 속할 확률, 도 구할 수 있다는 것이다. 또한 주어진 자료들에 대해 가장 적합한 그룹의 수를 결정하는 방법을 제시하여 그룹의 수나 세분화의 근거를 사전에 제공하지 않아도 자료가 주는 정보로부터 이들을 자동으로 결정하는 방법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.