Park Min Jae;Won Jae Kang;Kim Chang Min;Kim KwangHoon
Journal of Internet Computing and Services
/
v.6
no.6
/
pp.57-69
/
2005
This paper proposes a minimal workflow model as a feasible solution to the workflow process rediscovery problem. The minimal workflow model can be represented by the minimal workflow net. The process model is represented by ICN(Information Control Net) Modeling method, ICN can configure activity dependent net applying proper algorithm according to activity dependency among activities which configure the ICN, The proposed model is possible to develop with the application of minimal workflow net and with the application of the algorithm related to activity dependent net properties, Hence, it can solve the process rediscovery problem and can also be helpful on process improvement.
Journal of Korea Society of Industrial Information Systems
/
v.10
no.4
/
pp.54-64
/
2005
The study investigated genetic algorithms for the optimal control model of maximum height vertical jumping. The model includes forward dynamic simulations by the neural excitation-control variables. Convergence of genetic algorithms is very slow. In this paper the micro genetic algorithm(micro-GA) was used to reduce the computation time. Then a near optimal solution from micro-GA was an initial solution for VF02, which is one of well-developed and proven nonlinear programming algorithms. This approach provided the successful optimal solution for maximum-height jumping without a reasonable initial guess.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.288-291
/
2004
기존의 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. SOFPNN의 구조는 퍼지 다항식 뉴론(FPN)들로 구성되어 있으며, 층이 진행하는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. 그러나, 노드의 입력변수의 수와 규칙 후반부 다항식 차수 그리고 입력변수는 설계자의 경험 또는 반복적인 학습을 통해 선호된 네트워크 구조를 선택하였으나, 최적의 네트워크 구조를 구축하는데는 어려옴이 내재되어 있었다. 본 논문에서는 자기구성 퍼지 다항식 뉴럴네트워크(Self-Organizing Fuzzy Polynomial Neural Networks: SOFPNN)을 최적화시키기 위해 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 따라서 모델 구축에 있어서 유연성과 정확성을 가지며 객관적이고 좀 더 정확한 예측 능력을 가진 SOFPNN 모델 구조를 구축할 수가 있다.
Proceedings of the Korea Society for Energy Engineering kosee Conference
/
2003.05a
/
pp.473-483
/
2003
본 논문은 안전해석 등에 사용되는 RETRAN-3D 등 최적해석 코드를 기반으로 하면서도 복잡한 하드웨어 없이 간편한 GUI (Graphic User Interface)를 이용하여 광범위한 발전소 과도상태를 해석하기 위한 다양한 기능을 통해 시뮬레이션 조작을 쉽게 할 수 있는 웨스팅하우스형 950MW급 최적 원전운전분석기 (Nuclear Plant Analyzer)를 다루고자 한다. WH형 950MW 원전 운전최적분석기는 기존의 단순한 Point Kinetics 모델이 아닌 정교한 3D 실시간 노심모델과 RETRAN 코드를 기반으로 하는 실시간 NSSS 열수력 모델 (ARTS)이 통합된 모델을 갖추고 있으며, 해당형식발전소 (WH 3 Loop PWR Plant : 고리 3,4호기, 영광1,2호기 원전)의 여러 가지 과도사고를 실시간으로 정상, 비정상, 비상운전 등으로 모의할 수 있도록 개발되었다. 모의결과 주요 과도 상태의 결과가 해석한 결과와 잘 일치하였으며, 해당형식 발전소 과도 분석이나 규제요원 훈련에 이용될 계획이다.
본 논문에서는 복잡하고 비선형적인 시스템에 대하여 구체적이고 체계적인 방법에 의한 퍼지 모델을 동정하기 위해 유전자알고리즘을 이용하여 전반부 및 후반부의 구조와 파라미터 동정하기 위한 유전론적 접근을 소개한다. 정보 입자 기반 퍼지 모델의 구조를 동정하기 위하여 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정하고, 파라미터를 동정하기 위하여 전반부 멤버쉽 파라미터를 동조하여 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정에 있어서 개별적인 방법과 동시적인 방법으로 접근하여 정보 입자 기반 퍼지 모델의 최적 동정을 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.
Proceedings of the Korean Society of Precision Engineering Conference
/
1995.04b
/
pp.131-136
/
1995
최근 기계가공이 CAD/CAM화되고 가공기술이 고정밀화, 고능률화 되어감에 따라 절삭공정에 대한 정확한 모델이 필요하다. 절삭공정에서 공작물의 정밀도나 가공능률에가장 큰 영향을 미치는 것이 절삭력과 표면거칠기로서 이의 해석을 위해서 절삭력 모델과 표면거칠기 모델이 사용되고 있다. 본 연구에서는 정면밀링가공에서 인서 트 초기오차와 날의 형상을 고려하여보다 쉬운 표면조도 모델을 세우고, 절삭과정을 진동계로 모델링하여 3차 원 동적 표면형상을 예측하고자 한다. 도한 본 모델을 이용하여 정면밀링작업에서 최적의 절삭조건을 찾고자 한다. 밀링가공에서 표면조도는 날딩 이송과 함께 인서트 초기위치오차에 의하여크게 좌우 되기 때문에 최적 의 이송을 찾아서 알맞은 표면조도를 얻고 절삭효율을 높이기는 힘들다. 따라서 본 연구에서 개발한 표면조도 모델을 이용하여 최적의 이송을 찾아서 목적에 합당한 표면조도를 얻고, 또한 절삭효율도 높일 수 있는 방법을 제시하고자 한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.317-320
/
2005
본 논문은 비선형 시스템의 퍼지모델을 설계하기 위해 데이터 입자 기반 퍼지 집합 퍼지 모델의 최적 동정을 제안한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. HCM 클러스터링을 통한 데이터 입자는 입력 변수의 개별적인 퍼지 규칙을 형성하고, 퍼지 공간 분할 및 삼각형 멤버쉽 함수의 초기 정점을 정의한다. 또한, 데이터 입자의 중심을 이용하여 후반부의 구조를 결정한다. 초기 퍼지 모델을 동정하기 위해 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽 함수의 수, 그리고 후반부 형태를 결정한다. 데이터 입자에 의한 전반부 멤버쉽 파라미터는 유전자 알고리즘을 이용하여 최적으로 동정한다 제안된 모델을 평가하기 위해 수치적인 예를 사용한다.
본 연구에서는 머신러닝(Machine Learning, ML)과 딥러닝(Deep Learning, DL) 모델을 앙상블(Ensemble)하여 어떠한 주가 예측 방법이 우수한지에 대한 연구를 하고자 한다. 연구에 사용된 모델은 하이퍼파라미터(Hyperparameter) 조정을 통하여 최적의 결과를 출력한다. 앙상블 방법은 머신러닝과 딥러닝 모델의 앙상블, 머신러닝 모델의 앙상블, 딥러닝 모델의 앙상블이다. 세 가지 방법으로 얻은 결과를 평균 제곱근 오차(Root Mean Squared Error, RMSE)로 비교 분석하여 최적의 방법을 찾고자 한다. 제안한 방법은 주가 예측 연구의 시간과 비용을 절약하고, 최적 성능 모델 판별에 도움이 될 수 있다고 사료된다.
본 논문은 일반적인 최적조류계산에 조속기 모델을 포함한 조속기 최적조류계산 알고리즘을 제시한다. 최적조류계산 문제를 풀 때 무효전력 최적화 문제의해를 제시하는데 있어 유효전력의 분배는 조속기 모델에 따라 자동적으로 배분되므로 무효전력원 및 발전단 단자 전압의 조절을 통하여 무효전격 최적화를 수행할 수 있다. 이는 mid-term 상태에서의 최적해를 제시하고자 할 때 보다 실효성을 가진다. 또한 계통상태의 변화에 따른 주파수 변화에 대한 정보를 추가로 얻을 수 있어 다양한 응용분야에 활용성이 높다.
Proceedings of the Computational Structural Engineering Institute Conference
/
2010.04a
/
pp.568-573
/
2010
본 논문에서는 압축하중 및 풍하중, 지진하중을 받는 RC (Reinforced Concrete) 빌딩 시공에 필요한 부재의 재료비를 최소화하기 위해 부재의 부피를 최소화하는 최적설계를 수행한다. 최적설계 수행을 위해 상용 PIDO (Process Integration and Design Optimization) 툴인 PIAnO (Process Integration, Automation and Optimization)에서 제공하는 다양한 설계기법들을 이용한다. 먼저 실험계획법을 사용하여 실험계획을 세우고, 실험점에 따라 범용 구조해석 프로그램인 MIDAS Gen을 사용하여 구조해석을 수행한다. 그리고 해석결과를 바탕으로 각 응답에 대한 근사모델을 생성한 후 근사모델과 최적화기법을 이용하여 최적설계를 수행하고, 제한조건을 만족하면서 부재의 부피를 최소화함으로써 제안된 설계방법의 유효성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.