• Title/Summary/Keyword: 최적 공정 조건

Search Result 1,461, Processing Time 0.035 seconds

Development of a Bioscrubber for Treatment of VOC Emissions from Contaminated Soil with Hydrocarbons (유류오염토양으로부터 발생하는 VOC가스처리를 위한 바이오스크러버 개발)

  • 장윤영;황경엽;곽재호;최대기
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.83-90
    • /
    • 1997
  • Aiming at the treatment of large volumes of gas with a low concentration of poorly water soluble VOC(Volatile Organic Compound), a new system is proposed: the combination absorption tower/bioreactor. In the scrubber part of the bioscrubbing system, the contaminating compounds are absorbed in a aqueous phase. The contaminated scrubbing liquid is transported to the bioreactor, where the compounds are biodegraded by aerobic microorganisms (mainly to carbon dioxide, water, and biomass). In this study, separation of a volatile organic compound(VOC) out of a waste gas stream has been carried out using a re-cyclable high boiling point extrant(HBE). The liquid stream containing a high boiling point entrant(HBE) scrubs the gas stream in a direct gas-liquid countercurrent contacting operation in a packed tower for the removal of said component from the gaseous stream. A packed-bed column using Pall Ring was set up in order to simulate practical conditions for the scrubbing tower. The liquid stream transported to the bioreactor is recovered and recycled to the scrubber. The model gas, which contained 400 mg/$\textrm{m}^3$ of toluene, at a rate of 100 L/min, flowed into the packed column where the scrubbing liquid trickled over the packing in countercurrent to the rising gas at 10~15L/min. The bioscrubber designed for large volume air streams containing VOCs showed removal efficiency up to 80% in an optimum operating conditions during the tests fer removing toluene from an air stream by scrubbing the air stream with HBE.

  • PDF

Inhibitory Effects of Toxic Materials on Activation of Microorganisms in Coke Plant Wastewater (코크스폐수에 함유된 $S^{-2}$$SCN^-$이 미생물 활성에 미치는 영향)

  • Kim, Sang-Sik;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.423-427
    • /
    • 2013
  • This research was carried out to identify the characteristics of the wastewater from coke oven gas (COG) purification process of the coke plant, and derive optimal operating conditions for the treatment of wastewater. The coke plant wastewater contains highly concentrated $S^{-2}$ and $SCN^-$ that are harmful to microorganisms, and their concentrations were 6.8~11.2 mg/L and 190~320 mg/L, respectively. When the $S^{-2}$ ion concentration was lower than 10 mg/L, $SV_{30}$ of active sludge was 280~ 340 mL and the sludge sedimentation velocity was very fast. But, when the $S^{-2}$ ion concentration was higher than 15 mg/L, $SV_{30}$ of the active sludge was 560~680 mL and the sludge sedimentation velocity was very slow. Also when the $SCN^-$ ion concentration was lower than 300 mg/L, $SV_{30}$ of the active sludge was 245~320 mL and the sludge sedimentation velocity was very fast. But, when the $SCN^-$ ion concentration was higher than 400 mg/L, $SV_{30}$ of the active sludge was 470~ 567 mL and the sludge sedimentation velocity was slow. To treat the wastewater generated by COG purification process of the coke plant effectively and to maintain microorganism activities in good conditions, the ion concentration of $S^{-2}$ and $SCN^-$ should be lower than 15 mg/L and 400 mg/L, respectively.

Practical Study of Low-temperature Vacuum Swing Adsorption Process for VOCs Removal (휘발성 유기화합물 제거를 위한 저온 vacuum swing adsorption 공정의 실용화 연구)

  • Jeon, Mi-Jin;Pak, Seo-Hyun;Lee, Hyung-Don;Jeon, Yong-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.332-338
    • /
    • 2017
  • The objective of this work was to study the low temperature vacuum adsorption technology applicable to small and medium scale painting plants, which is the main emission source of volatile organic compounds. The low-temperature vacuum swing adsorption (VSA) technology is the way that the adsorbates are removed by reducing pressure at low temperature ($60{\sim}90^{\circ}C$) to compensate disadvantages of the existing thermal swing adsorption (TSA) technology. Commercial activated carbon was used and the absorption and desorption characteristics of toluene, a representative VOCs, were tested on a lab scale. Also based on the lab scale experimental results, a $30m^3min^{-1}$ VSA system was designed and applied to the actual painting factory to assess the applicability of the VSA system in the field. As a result of lab scale experiments, a 2 mm pellet type activated carbon showed higher toluene adsorption capacity than that of using 4 mm pellet type, and was used in a practical scale VSA system. Optimum conditions for desorption experiments were $80{\sim}90^{\circ}C$ and 100 torr. In the practical scale system, the adsorption/desorption cycles were repeated 95 times. As a result, VOCs discharged from the painting factory can be effectively removed upto 98% or more even after repeated adsorption/desorption cycles when using VSA technology indicating potential field applicabilities.

A Study on the Proteolysis of Mussel Protein by a Commercial Enzyme Preparation (단백질 분해효소에 의한 홍합 단백질의 분해에 관한 연구)

  • Choi, In-Jae;Nam, Hee-Sop;Shin, Zae-Ik;Lee, Byong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.519-523
    • /
    • 1992
  • The patterns on the proteolysis of mussel protein using a commercial enzyme preparation were investigated. The best one among six commercial enzyme preparations for the manufacture of mussel extract was Corolase PP, based on the degree of hydrolysis (DH). When the raw mussel paste, without water addition, was adjusted to pH 6.5, added 0.1% (w/w dry basis) of Corolase PP. and reacted at $50^{\circ}C$ for four hours, it reached the maximum value of DH (79%). The precooking of raw mussel decreased the efficiency of extraction and hydrolysis of the protein, due to the inactivation of the autolytic enzymes contained in the mussel. During the course of proteolysis, major free amino acids such as glycine, alanine, glutamic acid and lysine, representing a characteristic brothy taste of mussel were replaced with free hydrophobic amino acids including valine, methionine, isoleucine, and leucine. The electrophoretic pattern and HPLC-GPC pattern of mussel protein hydrolysates during the hydrolysis were observed and also discussed.

  • PDF

Optimization of Nanoencapsulation Process for Azelaic Acid-Milk Nano Powder and Acne Nanocosmetics (Azelaic Acid 함유 밀크 나노분말과 여드름 나노화장품을 위한 나노캡슐의 최적화 공정)

  • Kim, Dong-Myong;Choi, Ji-Eun;Kim, Duck-Hoon;Lee, Jun-Tack
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.43-53
    • /
    • 2011
  • The conditions in fluid-bed processor for nanoencapsulation of azelaic acid-milk nano powder for acne nanocosmetics were optimized by response surface methodology (RSM). The maximum value of yield was 70.97 %. The yield was appreciably influenced by inlet air temperature, atomizing pressure, and feeding speed. The particle size increased with an increase in the feeding speed and a decrease in the atomizing pressure. The elution rate in saline solutions was appreciably influenced by inlet air temperature and atomizing pressure. The moisture content increased with higher atomizing pressure, which was demonstrated to be similar to the nanoencapsulation characteristics related to water activity. The Hunter's L and b values increased with an increase in the inlet air temperature. The optimum conditions estimated by RSM for the maximized values of yield, moisture content, particle size and elution rate in skin suitability were $67{\sim}73^{\circ}C$ of inlet air temperature, 0.6 ~ 0.8 mL/min feeding speed and 1.8 ~ 2.0 kg/$cm^2$ of atomizing pressure, respectively. These estimated values were in agreement with those measured by real experiments.

Process technology and the formation of the TiN barrier metal by physical vapor deposition (PVD 방법에 의한 TiN barrier metal 형성과 공정개발)

  • 최치규;강민성;박형호;염병렬;서경수;이종덕;김건호;이정용
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.255-262
    • /
    • 1997
  • Titanium nitride (TiN) films were prepared by reactive sputter deposition in mixed gas of Ar+$N_2$. The volume percentage of $N_2$ in the working gas was chosen so as to grow stoichiometric TiN films and the substrate temperature during film growth was set from room temperature to $700^{\circ}C$. Stoichiometric $Ti_{0.5}N){0.5}$ films with (111) texture were grown at temperatures over $600^{\circ}C$, while films prepared at temperatures below $600^{\circ}C$ showed N-rich TiN. The composition X and y in the $Ti_xN_y$ films determined by XPS and RBS varied within 5% with the substrate temperature. The sheet resistance of the TiN films decreases as the substrate temperature increased. TiN film prepared at $600^{\circ}C$ showed 14.5$\Omega\Box$, and it decreased to 8.9$\Omega\Box$ after the sample was annealed at $700^{\circ}C$, 30 sec in Ar-gas ambient by RTA. By far, high quality stoichiometric TiN films by reactive sputtering in the mixed gas ambient could be prepared at substrate temperature over $600^{\circ}C$.

  • PDF

A Study on the Injection Molding Analysis of the Metal Powder Material (금속분말재료의 사출 성형해석에 관한 연구)

  • Ro, Chan-Seung;Park, Jong-Nam;Jung, Han-Byul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.42-47
    • /
    • 2017
  • In this study,we conducted an injection molding analysis of metal powder materials for the development of flanges, which are necessary adapters for optical communication. The metal powder injection molding process is a technique for producing an injection molded article having a complicated shape by mixing ceramic or stainless powder and binders. It is used to produce products which require complex processing technology or for which the productivity is low. The purpose of this study is to minimize the manufacturing processing of products which are manufactured through existing mechanical processing procedures. For the injection molding analysis, we mixed stainless STS316 metal powder with binders at a ratio of 6 to 4 to make molding materials consisting of granular pellets. Then, three-dimensional modeling and meshing were carried out to obtain the optimal injection molding analysis conditions(molding temperature, melting temperature, injection time, injection temperature, injection pressure, packing time and cooling time). As a result of the analysis, it was discovered that the inlet became available 13.29 seconds after the first injection. Also, as the flowing and packing in the melt through the sprue, runner and gate were stable, it is expected that good molds can be manufactured.

Improvement of DeNOx efficiency of SNCR Process with Chemical Additives in Urea Soution (환원제로 우레아를 사용하는 SNCR 공정에서 첨가제 적용에 따른 탈질효율 향상 연구)

  • Yoo, Kyung Seun;Park, Sung Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.663-668
    • /
    • 2017
  • Dye waste water generated in the dye industry is categorized as hazardous waste water that requires appropriate treatment. The pilot scale experimental trials were carried out using dye waste water as an effective additive for the selective non-catalytic reduction (SNCR) of NOx in combustion flue gases. The additives were waste liquor obtained from the dye industry and several purification steps were taken to make a standardized reagents. The dye waste water was shown to possess valuable SNCR qualities (at least 87% NOx reduction efficiency) considering its availability as a waste product, which has to be strictly treated, and have little effects on CO removal. The results indicated that the NO removal efficiency increased first and then decreased with increasing temperature within $750-1150^{\circ}C$. The maximum NO reduction efficiency was approximately 87% at the optimal reaction temperature. A more than 10% increase in NO reduction was achieved in the presence of 1000 ppm Na-additives (dye waste water) compared to that without additives. The Na-based additives have also a significant promoting effect on $N_2O$ reduction and within the SNCR temperature window.

Manufacture of Biodegradable Polymer with Wastepaper(I) - Pretreatment and Analysis of Chemical Components On Wastepaper - (폐지를 이용한 생분해성 고분자의 제조(I) - 폐지의 화학적 조성 분석 및 전처리 -)

  • Kwon, Ki-Hun;Lim, Bu-Kug;Yang, Jae-Kyung;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.34-41
    • /
    • 2000
  • Recently many scientists have tried to synthesize biodegradable polymers due to durable and non-biodegradable products of conventional synthetic plastics when these were wasted in nature. So to reuse the wastepapers for biodegradable polymer resources, ONP (old newsprint), OCC (old corrugated containerbpard) were carried out by the pretreatment of chlorinite, hypochlorite and oxygen-alkali treatment conditions. For manufacturing of biodegradable polymer with wastepaper, this study performed to investigate change of chemical components and optimal pretreatment condition. The summarized results in this study were as follows: Lignin content in ONP and OCC was was higher than in MOW and ash content was the highest in MOW. More amount of ash components were reduced by wet defiberation than by dry defiberation. Wet defiberation fiber are better than dry defiberated fiber in chemical pretreatment condition for wastepapers, and the best result was obtained in the condition of sodium chlorite at $70^{\circ}C$, because it has high delignification ratio, ${\alpha}$-cellulose contents and degree of polymerization in this treatment condition. Oxygen-alkali treatment condition is the worst method because of low yield, low degree of polymerization in this pretreatments.

  • PDF

Polymerization of Ethylene over $Cp_2ZrCl_2$ Catalyst Supported on Montmorillonite (Montmorillonite에 담지된 $Cp_2ZrCl_2$ 촉매를 이용한 에틸렌 중합특성 연구)

  • Ahn, Sung-Hyun;Lee, Sung-Ho;Choi, Moo-Seok;Im, Jun-Seop;Sheikh, Rizwan;Cho, Deug-Hee;Park, Yeung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.55-61
    • /
    • 2013
  • Heterogeneous metallocene catalysts supported on montmorillonite (MMT), [$Cp_2ZrCl_2$/MMT, $Cp_2ZrCl_2$/MAO/MMT, and $Cp_2ZrCl_2$ + MAO/MMT], were prepared with three different methods of immobilization and tested for ethylene polymerization. The heterogeneous catalysts immobilized on organo clay (30B-MMT) showed the higher metal loading and polymerization activity than those immobilized on natural clay $Na^+-MMT$. These results suggest that the hydroxyl groups of organo clay interlayers react with the MAO and catalyst through the chemical bond. The metallocene catalyst supported directly on MMT showed lower activity for ethylene polymerization compared to the homogeneous systems, while MMT/MAO/$Cp_2ZrCl_2$, catalysts treated with MAO before impregnation, showed a higher activity. The polymers obtained from MMT-supported catalysts have higher melting point, molecular weight and molecular weight distributions than those of homogeneous catalysts. The polymer particles with increasing significant size. Ethylene polymerization over 30B-MMT/MAO/$Cp_2ZrCl_2$ catalyst was also performed varying the process variables to optimize the process conditions.