• Title/Summary/Keyword: 최적 간극

Search Result 66, Processing Time 0.026 seconds

Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality (Spot용접 접합면의 초음파 비파괴평가 기법 제 1보 C-scan 기법을 중심으로)

  • Park, Ik-Gun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.112-121
    • /
    • 1994
  • This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to $10{\mu}m$ extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques.

  • PDF

Numerical Analysis for Consolidation of Compressible Soils (압축성 모의 압밀에 대한 수치해석 -다층토를 중심으로-)

  • Kim, Pal-Gyu;Song, Yong-Hui;Lee, Hwan-Gi
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.5-12
    • /
    • 1985
  • Ocassionally it is used for simple extensions of Terzahgi's theory to account for time-depend- tint loading but there is little evidence of application in more complicated consolidation theories that take into account such effects as nonlinear stress.strain, layered systems or large strains. The purpose of this paper provides an efficient computer algorthm based on numerical analysis using finite difference method which account for multi-layered soils to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically. The explicitly scheme of solving the consolidation equations has been investigated from the point of view of the stability conditions and the convergence with variance of the operator as well as to obtain an optimal divided depth ratios of total depth. A comparison of the settlement predictions with both the classical analysis and the algorithm based on numerical analysis indicates that the new algorithm scheme is found to be superior to the classical theory in the layered soils.

  • PDF

Dynamic Shear Modulus of Compacted Clayey Soil (다짐점성토(粘性土)의 동적전단탄성계수(動的剪斷彈性係數))

  • Kang, Byung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.109-117
    • /
    • 1983
  • Dynamic shear modulus of the compacted clayey soil was determined by the resonant column test to study the parametric effects of confining pressure, shear strain amplitude, molding water content, compaction energy, void ratio and the degree of saturation. The effect of each of these parameters on the dynamic shear modulus found to be significant and can be explained in terms of the changes in soil by compaction. Dynamic shear modulus of the compacted soil is increased significantly by compaction and compaction at the dry side of the optimum moisture content is much more effective. It is also found that the dynamic shear modulus showes a good correlation to the static shear strength of the compacted soil. Therefore the dynamic shear modulus of the compacted soil for a certain confining pressure may be obtained ea8i1y from the unconfined compression strength.

  • PDF

Flow Analysis for Optimal Design of Small Gear Pump (소형 기어펌프 최적화 설계를 위한 유동해석)

  • Lee, Suk-Young;Kim, Seung-Chul
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2015
  • Gear pump has a simple structure high reliability, easy operation and maintenance, widely used as a source of hydraulic system of hydraulic. In general, the gear pump was designed using variety of variables, the variables through the analysis of the mass flow rate and efficiency. In this paper, three-dimensional flow of the gear pump, in order to produce the optimal design of product, analysis was performed by using commercial software ANSYS v15.0 CFX. And then, combination of design parameters selected by ANSYS was carried out to confirm the simulation result. The efficiency and mass flow rate of the gear pump were studied by varying its rotational speed and the clearance between the gear tip and the housing. In the simulation results, as the rotational speed were increased, the average mass flow rate and efficiency increased. Furthermore, as the clearance between the gear tip and the housing was increased, the average mass flow rate and efficiency decreased.

Effect of Stability of Reinforced Wall within Drain Layers in the Rainfall (강우시 보강토 내부 배수가 보강토 옹벽의 안정성에 미치는 영향)

  • Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.165-174
    • /
    • 2017
  • There are natural disasters caused by abnormal climate in the world. In particular, there are frequent disasters such as floods and landslides caused by rainfall in summer. Rainfall will have a major impact on the stability of a retaining wall. If drainage during rainfall activities within the retaining wall is not made properly, permeated water brings a significant increase in pore pressure inside of the backfill soil and reduces the shear strength of the soil. Therefore, research how to install the drainage layers to reduce the infiltrated water inside of the backfill soil is very necessary. In this study, we performed a numerical modeling to find the optimum installation conditions of the location and number of drainage layer related to stability of the reinforced retaining wall during rainfall installed geosynthetics.

Evaluation of Filling Performance of Steel Concrete Panel (SCP) Mock-up Member with Low-binder based High-fluidity Concrete (저분체 기반 고유동 콘크리트의 Steel Concrete Panel Mock-up 부재 충전 성능 평가)

  • Park, Gi Joon;Park, Jung Jun;Kim, Sung Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.477-483
    • /
    • 2019
  • Recently, precast type SCP modules are being used instead of PSC structures in order to reduce the construction period and costs of special structures such as nuclear power plants and LNG storage tanks. The inside of the SCP module is connected with a stud for the integral behavior of the steel and concrete, and the use of high fluidity concrete is required. High fluidity concrete generally has a high content of binder, which leads to an increase in hydration heat and shrinkage, and a problem of non-uniform strength development. Therefore, in this study, fluidity and passing performance of high fluidity concrete according to material properties are investigated to select optimum mix design of low binder based high fluidity concrete. Mechanical properties of high fluidity concrete before and after pumping are examined using pump car. The filling performance of SCP mock-up members was evaluated by using high fluidity concrete finally.

Numerical study for the optimum grouting design of subsea tunnels (해저터널의 그라우팅 최적 설계를 위한 수치해석적 연구)

  • Joo, Eun-Jung;Kim, Yong-Kye;Shin, Jong-Ho;Kwon, Oh-Yeob
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.349-358
    • /
    • 2010
  • In the long-term, most tunnels suffer from the increase in ground water inflow and in pore water pressure on the lining. To reduce such hydraulic effect, generally grouting methods are adopted. In this paper effective grouting design is proposed based on numerical simulation. To investigate the optimal grouting layout, factors such as relative permeability, grouting thickness, and distance from the lining are considered. The results are analysed in terms of pore water pressure, inflow rate, and earth pressure. It is revealed that the pore water pressure has increased with a decrease in grout permeability, an increase in grouting thickness and an increase in grouting distance. Meanwhile the inflow rate has decreased with a decrease in grout permeability and is inversely proportional to grouting thickness. Effective grouting design guideline are proposed based on this study.

Comparison of Characteristics on Electrolyzed Water Manufactured by Various Electrolytic Factors (전해인자에 따른 전기분해수의 특성 비교)

  • Kim, Myung-Ho;Jeong, Jin-Woong;Cho, Young-Je
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.416-422
    • /
    • 2004
  • Efficacy of surface sterilization and physicochemical properties of electrolyzed water manufactured depending on electrolyte, materials, and type of electrolytic diaphragm used were investigated. Physical properties of electrolyzed water manufactured from diaphragm system showed the highest effectiveness under at distance between diaphragms of 1.0 mm and 20% NaCl supplying rate of 6 mL/min. ORP, HClO (should defined) content, and pH at above conditions were 1,170 mV, 100 ppm, and 2.5, respectively. Two-stage electrolyzed system was more effective than one-stage one. Electrolyzed water manufactured from non-diaphragm system at 4 mL/min supplying rate of 20% NaCl was similar to the most effective diaphragm system, whereas ORP, HClO content, and pH were 800 mV, 200 ppm, and 9, respectively. Sealed electrolyzed water could be preserved more than one month at room temperature with ORPs of 750 and 1,150 mV in non-diaphragm and diaphragm systems, respectively, and at HClO content of 100 ppm. Physicochemical properties of electrolyzed water manufactured from electrolytic diaphragm of $IrO_{2}$ and Pt+Ir were more effective than that of Pt. ORP and HClO contents of electrolyzed water manufactured from various electrolytes were high in order of NaCl>KCl>$CaCl_{2}$, whereas no differences were observed among electrolytes in sterilization efficacy. Twelve kinds of microorganisms tested (initial total count, $10^{5}-10^{6}CFU/mL$) were sterilized within 1-2 min by electrolyzed water.

Stress & Life Evaluation of Cylindrical Roller Bearing for Aircraft Gearbox according to Roller Profile Shape (롤러 프로파일에 따른 항공용 기어박스 원통 롤러 베어링의 응력 및 수명 평가)

  • Jae-Hyun, Kim;Hyun-Woo, Han;Dongu, Im;Jung-Ho, Park;Su-Chul, Kim;Young-Jun, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.35-44
    • /
    • 2022
  • This study aims to evaluate the stress and life of cylindrical roller bearings used in aircraft gearboxes, and to select a roller profile that minimises the contact stress between bearing rollers and raceways. The mounting clearance of four points contact ball bearing was determined, so that cylindrical roller bearings support all radial loads, and the bearing mounting position was determined to maximise the bearing lives. In addition, the static safety factor and dynamic life of bearing were predicted according to ISO 76 & ISO/TS 16281 using the load spectrum determined based on the operating load cases of aircraft gearboxes. Furthermore, the optimal roller profile was selected by analysing the contact stress according to the roller profile shape, and the safety of each roller was evaluated. The results stated that the required safety factor and lifetime were satisfied, and Johns Gohar roller profile was optimal.

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.