• Title/Summary/Keyword: 최적 가공조건

Search Result 506, Processing Time 0.033 seconds

A Study on the Improvement of Machinability in Hot-Forged Aluminum Alloy Product(Al 7075) (알루미늄 합금(Al 7075) 절삭성 향상을 위한 열간단조 후처리 방법에 관한 연구)

  • 김진복;임학진;강범수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.46-53
    • /
    • 2000
  • Hot forging of aluminum alloy has the bad machinability due to continuous chip formation caused from the ductility The bad machinability requires a labor and a high cost to produce final products after hot forging. In industrial field, T4 heat treatment is performed to improve the machinability, and the annealing and the cold sizing are followed. In this study, a series of heat treatments are introduced during hot forging operation without T4 heat treatment after forming so that it improves the machinability with reduction of the number of operations and machining cost. Instead of T4 heat treatment, water cooling and air cooling are tried and compared to find out an optimum cooling condition

  • PDF

Selection of the Optimal Machining Condition for a High-hardness Resin using the 5-axis Machine (5축 가공기를 이용한 고경도 수지의 최적가공조건 선정)

  • Kim, Nam-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.29-34
    • /
    • 2012
  • This study describes the selection of optimum machining conditions for a high-hardness resin by using a large 5-axis machine. The experiments were conducted to examine the main factors that affect the surface roughness, such as the spindle speed, axial and radial depths of the cut, and pattern of the cutter path. To analyze the experiment results, the factor with the biggest impact on machining was determined using the smaller-the-better characteristic of the Taguchi method; the effectiveness of the experiment was then confirmed by verifying the selected optimum machining condition.

Surface Roughness of Turned Aluminum in MQL (MQL 알루미늄 선삭가공의 표면거칠기)

  • Hou, Xiang-Yu;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.52-59
    • /
    • 2011
  • 가계가공은 절삭 부위의 냉각작용과 윤활작용을 위해 절삭유를 많이 소모한다. 절삭유는 염소계의 극압첨가제 등이 함유되어 있어 작업자들에게 유독할 뿐만 아니라 대기의 오염을 초래하여 청정생산을 저해하게 되므로 이런 전통적인 방법은 작업자의 직업병으로부터 보호와 환경보호를 위하여 새로운 가공방법으로 변경되어야만 한다. MQL 기계가공 방법은 절삭유를 아주 소량 소모하므로 청정생산을 위한 대안으로 떠오르고 있지만 많은 작업자들이 이에 대한 기술적인 확신이 부족하여 이 방식의 사용을 주저하고 있다. 본 연구는 MQL 가공 방식에서 가공의 특성을 파악하여 표면거칠기에 영향을 미치는 인자와 범위를 찾고자 다양한 실험을 계획하고 그 결과를 분석하였다. 실험의 계획에서는 각 가공의 특성을 잘 나타낼 수 있는 인자와 수준을 선정하고, 다양한 상황의 결과를 분석하여 MQL 가공의 특성과 최적의 가공조건을 도출하였다. 본 연구의 실험 및 분석의 결과로서, 절삭 파라미터와 그의 수준이 가공특성을 잘 반영할 수 있도록 적절히 선택된다면 MQL 기계가공은 표면거칠기 향상 및 원가절감이나 환경보호 측면에서 절삭유 윤활방식을 대체하는 green manufacturing을 위한 대안이 될 수 있음을 보였다.

형태안정성 레이온 복합소재 염색가공 연구

  • Kim, Myeong-Sun;Park, Seong-Min;Gwon, Il-Jun;Seo, Mal-Yong;Kim, Hye-Jeong
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.103-103
    • /
    • 2011
  • 비스코스레이온(Viscose Rayon)소재는 목재 펄프를 원료로 한 재생섬유(습식방사)로서 Drape성과 반발성은 탁월하나, 습식방사에 따른 분자구조적 불안정성으로 건 습열처리시 형태불안정(치수변화율이 큼)으로 제직(준비) 및 후공정상 여러 가지 Trouble 유발과 완제품 세탁시 수축발생으로 종종 Dry Creanning 해야 하는 문제점들이 내재되어 있다. 또한 수분흡수시 강도저하, 수축과 구김, 염색 불균염 등의 문제점과 섬유공정상 생활취급상에 많은 애로를 가지고 있으며, 구성고분자가 수소결합에 의해 강고하여 "신축문제", 수분흡수시 팽윤(Swelling)에 의한 형태불안, 즉 "수축문제"가 개선해야 할 고질적 문제로 남아있다. 따라서 본 연구에서는 레이온 소재의 형태안정화 제품을 개발하기 위하여 복합사고공 및 염색가공 기술을 개발하고자한다. 신축 및 복합기술에 의한 Rayon DTY, N/R 신축 및 복합기술에 의한 Rayon DTY, N/R 복합가공사를 개발, 제편직 요소기술과 염가공기술을 연구하므로서 형태안정성 레이온 복합소재 제품을 개발하고자 한다. Rayon 소재의 후공정 용이성과 형태안정성을 부여하기 위하여, 레이온 DTY가공사, Rayon-합섬 장(長)-장(長) 복합사를 개발하여 CoolBiz용 냉감소재 및 스포츠 웨어 소재 등으로 활용하고자 한다. 사가공기술에 의한 신도 16%, 수축률 1.6%인 형태안정 Rayon DTY 소재를 개발하였으며, 선연후가공기술에 의하여 N/R 복합가공사를 개발, 신도 18%, 수축률 1.2%인 차별화 레이온 소재를 개발하였다. 이에 기존 Rayon 후가공 및 염색공정과 상이한 개발된 선연후 가연 Rayon DTY가공사 및 T/R혼방사를 활용한 직물에 대하여 최적 전처리, 염색 후가공 공정의 최적 조건을 알아보았다.

  • PDF

CONDITIONS FOR CONGER EEL AND HAGFISH SKIN GLUE PROCESSING AND THE QUALITY OF PRODUCT (붕장어피 및 먹장어피를 이용한 피교의 가공조건에 제품의 성상)

  • LEE Eung-Ho;KIM Se-Kwon;CHO Duck-Jae;KIM Jin-Dong;no Sudibjo;KIM Soo-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 1978
  • Using the skins of conger eel, Astroconger myriaster, and hagfish, Eptatretus burzeri, from fillet manufactory, the optimum conditions of skin glue processing were investigated and physical ana chemical properties of the product were also determined. The yields of conger eel and hagfish skin to the total body weight were $10.6\%$ and $11.4\%$, respectively. The optimum processing conditions for conger eel skin glue were the extraction of skins which were previously tinted with $0.3\%$ calcium hydroxide solution for one hour, in water at pH 5.5 and $60^{\circ}C$ for four hours. The additional water was six times sample weight. In case of the hagfish skin glue, the liming time with $0.3\%$ calcium hydroxide solution was suitable for three hours, and the skins were extracted with water as much as nine times sample weight at pH 5.0 and $60^{\circ}C$ for three hours. The contents of crude protein of conger eel and hagfish skin glue were $91.5\%$ and $90.2\%$, respectively. The content of crude lipid was slightly higher than that of chemical grade gelatin. Relative viscosity, melting point, gelation temperature and jelly strength of conger eel skin glue were 13.6, $15.2^{\circ}C$, $6.2^{\circ}C$ and 13.0g respectively and those of hagfish skin glue were 12.9, $14.8^{\circ}C$, $4.3^{\circ}C$ and 23.3g respectively. The turbidity of conger eel skin glue and hagfish skin glue were slightly superior to those of dry glue.

  • PDF

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

Studies on the Processing of Low Salt Fermented Sea Foods 1, Processing Conditions of Low Salt Fermented Sardine (저염수산발효식품의 가공에 관한 연구 1. 저염정어리젓의 가공조건)

  • LEE Eung-Ho;CHA Yong-Jun;LEE Jong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.133-139
    • /
    • 1983
  • As a method of utilization of sardine, sardinops melanosticta, proper processing conditions for a low salt fermented sardine were investigated. And changes of chemical components during fermentation and the effects of additives to improve the quality of the product were also discussed. A low salt fermented sardine was prepared with 8 or $10\%$ of salt and various contents of additives such as lactic acid, sorbitol, glycerin and ethanol as preservatives and flavor enhancers, and fermented for 80 days at $29\pm3^{\circ}C$. Judging from the changes in pH, amino-nitrogen and volatile basic nitrogen during fermentation of low salted sardine and the organoleptic evaluation on their flavor, the products of sardine meat containing 8 or $10\%$ of table salt, $0.5\%$ of lactic acid, $6\%$ of sorbitol and $6\%$ of ethanol as additives were most desirable when fermented for 60 days.

  • PDF

Development of Functional Seasoning Agents from Skipjack Preparation By-product with Commercial Pretenses 1. Processing of Hydrolysate from Skipjack Processing By-product with Pretense Treatment (참치 가공부산물로 부터 단백질 분해효소를 이용한 기능성 천연조미료 제재의 개발 1. 참치 가공부산물로 부터 단백질 가수분해물의 제조)

  • 김은정;차용준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.4
    • /
    • pp.608-616
    • /
    • 1996
  • To propose the use of skipjack processing by-product(SPB) as a food material, the optimal condition for the production of the SPB hydrolysate through enzyme treatment was obtained using RSM(Response Surface Methodology). Among eight pretenses test, Pretense $P^{TM}$ was screened primarily on the aspect of production cost and taste of the product. The extent of autolysis accompanied by endogenous enzyme in the SPB was almost negligible as compared with that of Protense $P^{TM}$ treatment. The derived model equation was within the satisfiable range as indicated by coefficient of $determination(R^2=0.9460)$ and lack of fit(p>0.1) values. From the results of RSM and ridge analysis, the conditions favoring the higllest degree of hydrolysis were: PH 7.2, $51^{\circ}C,$ reaction time of 3.94 hr, substrate concentration of 33.3%, and enzym $e_strate ratio of 0.48%.48%.8%.

  • PDF

Optimum Machining Condition Determination for Pedicle Screw using Experimental Design Method (실험계획법에 의한 척추경 나사의 최적 절삭조건 결정)

  • Jang, Sung-Min;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.3-9
    • /
    • 2004
  • The main objectives of this paper are to determine optimum cutting conditions using experimental design method to manufacture pedicle screws. Generally, titanium alloys are known as difficult-to cut materials. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of Its low thermal conductivity and chemical reactivity. Such phenomenon cause increase of tool wear and deterioration of surface quality. Thus, in this paper, required experimental investigations are performed to evaluate the machinability of titanium materials With tungsten carbide tools Required simulation and experiments are performed, and the results are investigated.

  • PDF

A Study on the Robust Minimization of Warpage in Injection-Molded Part via the Optimal Design of Rib Geometry and Process Conditions (리브 형상과 공정조건의 최적설계에 의한 사출제품 휨의 안정적 최소화에 관한 연구)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Lee, Jong-Chan;Koo, Bon-Heung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.90-97
    • /
    • 2009
  • In the study, a design methodology for robust minimization of a warpage in injection-molded part is presented. Taguchi's parameter design method is integrated with a computer simulation tool for injection molding to search for best design with robustness against the process variability by noises. The proposed methodology is based on a two-stage process: (1) reducing a warpage in the part by optimizing the part geometry including the layout and size of ribs, and (2) additionally minimizing the warpage by optimizing process conditions. An example is used to illustrate the usefulness of the design methodology.

  • PDF