• 제목/요약/키워드: 최적화 모델

검색결과 2,991건 처리시간 0.036초

적응형 계층적 공정 경쟁 유전자 알고리즘을 이용한 정보입자 기반 퍼지집합 퍼지모델의 최적화 (Optimization of IG_based Fuzzy Set Fuzzy Model by Means of Adaptive Hierarchical Fair Competition-based Genetic Algorithms)

  • 최정내;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.366-369
    • /
    • 2006
  • 본 논문에서는 계층적 공정 경쟁 유전자 알고리즘을 통한 비선형시스템의 정보입자 기반 퍼지집합 퍼지집합 모델의 최적화 방법을 제안한다. 퍼지집합 모델은 주로 전문가의 경험에 기반을 두어 얻어지기 때문에 동정과 최적화 과정이 필요하며 GAs를 이용하여 퍼지모델을 최적화한 연구가 많이 있다. GAs는 전역 해를 찾을 수 있는 최적화 알고리즘으로 잘 알려져 있지만 조기 수렴 문제를 포함하고 있다. 병렬유전자 알고리즘(PGA)은 조기수렴를 더디게 하고 전역 해를 찾기 위한 진화알고리즘이다. 적응형 계층적 공정 경쟁기반 유전자 알고리즘(AHFCGA)을 이용하여 퍼지모델의 입력변수, 멤버쉽함수의 수, 멤버쉽함수의 정점 등의 전반부 구조와 파라미터를 동정하였고, LSE를 사용하여 후반부 파라미터를 동정하였으며 실험적 예제를 통하여 제안된 방법의 성능을 평가한다.

  • PDF

Transition Condition 분석에 따른 모델 최적화 연구 (Research on Model Optimization by Analysis of Condition of Transition)

  • 성봉진;정기현;최경희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.247-249
    • /
    • 2012
  • 본 연구에서는 MATLAB Simulink/Stateflow 기반으로 만든 모델의 transition의 condition을 미리 연산하고, 이를 바탕으로 모델을 최적화하는 모듈을 제안하고 이를 구현하였다. 구현한 모듈은 stateflow 내부의 transition condition의 label string을 이진트리로 구성하고, True/False를 판단한다. 그리고 condition의 True/False 판단 결과를 통해 모델의 최적화 과정을 수행한다. 제안하는 모듈을 이용하여 간단한 예시모델의 수정 과정을 보이고 테스트 커버리지가 향상되는 것을 검증하였다.

교량의 모드 특성을 이용한 다중 목적함수 기반 유한요소 모델의 개선 (Multi-Objective based Updating of Finite Element Model of Bridge Using Modal Properties)

  • 진승섭;이종재;이창근;윤정방;정형조
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.27-31
    • /
    • 2011
  • 차량의 대형화 및 고속화, 그리고 기존 교량의 노후화를 고려하였을 때, 교량의 건전성 평가는 매우 중요해지고 있다. 거동을 예측하는데 사용되는 유한요소 모델의 신뢰도는 이상적인 가정과 모델링 오차, 교량의 노후화 등에 의해 실제 거동을 반영하지 못하는 경우가 많다. 유한요소 모델의 신뢰도를 높이기 위해, 실제 교량의 거동을 계측하여, 이를 기반으로 물리적 의미를 가지는 변수들과 지점의 조건을 수정하는 모델의 개선이 주로 행해진다. 이러한 모델 개선은 최적화 기법을 통해 수행된다. 본 연구에서는 목적함수간 가중치에 의한 모델 개선 결과의 영향과 다중 목적 함수 최적화 기법을 통해, 가중치의 영향을 줄이고, 다양한 개선 모델들을 구하는데 적용하였다. 팔곡 3교의 실제 계측 데이터를 이용하여 단일 다중 목적 함수 기반의 모델 개선을 수행하였다. 단일 목적 함수의 경우, 정의되는 목적함수는 주로 고유진동수와 모드 형상에 관한 차이의 가중치 합으로 표현되어 지며, 이러한 가중치에 따라, 모델 개선의 결과에 영향을 가함을 확인하였다. 다중 목적 함수 기반의 모델 개선을 통해, 구해진 모델 개선 결과를 단일 목적 함수 기반 모델 개선의 결과들과 비교하였으며, 모델 개선에 대한 다중 목적 함수 최적화 적용을 분석하였다.

  • PDF

PSO 기반 RBFNN의 구조적 설계 (Structural Design of Radial Basis function Neural Network(RBFNN) Based on PSO)

  • 석진욱;김영훈;오성권
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.381-383
    • /
    • 2009
  • 본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계하고 모델을 최적화하기 위하여 최적화 알고리즘인 PSO(Particle Swarm Optimization) 알고리즘을 이용하였다. 즉, 모델의 최적화에 주요한 영향을 미치는 모델의 파라미터들을 PSO 알고리즘을 이용하여 동정한다. 제안된 RBF 뉴럴 네트워크는 은닉층에서의 활성함수로서 일반적으로 많이 사용되어지는 가우시안 커널함수를 사용한다. 더 나아가 모델의 최적화를 위하여 각 커널함수의 중심값은 HCM 클러스터링에 기반을 두어 중심값을 결정하고, PSO 알고리즘을 통하여 가우시안 커널함수의 분포상수, 은닉층에서의 노드 수 그리고 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 Mackey-Glass 시계열 공정 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.

  • PDF

반도체 공정 최적화를 위한 일반화된 회귀 신경망 플라즈마 모델 (A Generalized Regression Neural Network Plasma Model for Semiconductor Process Optimization)

  • 박성진;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2744-2746
    • /
    • 2000
  • 일반화된 회귀 신경망을 이용하여 반도체 공정 최적화를 위한 플라즈마를 모델링한다. 플라즈마는 Box-W린son 실험계획표에 의해 특성화되었으며, 여기에서 변화시킨 인자로는 소스전력, 압력, 척지지대의 위치, 그리고 염소의 유량이다. 총 24회의 실험이 수행이 되었으며, 플라즈마 변수는 Langmuir Probe를 이용하여 측정하였다. 측정된 주요 플라즈마 변수로는 전자밀도, 전자온도, 그리고 플라즈마 전위이다. 폭변수를 점진적으로 증가시켜 회귀신경망을 최적화하였으며. 최적화된 모델은 통계적인 반응표면모델과 비교하였다. 비교 결과, 회귀신경망은 반응표면모델에 상응하는 예측능력을 보이고 있음을 알 수 있었다.

  • PDF

검증용 위성 열모델을 이용한 위성 방열판 최적설계

  • 김희경;최성임
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.174.2-174.2
    • /
    • 2012
  • 위성의 방열판 설계 과정은 수치해석을 위해 위성을 모델링한 열모델에서 분할 격자인 노드를 기준으로 방열판 위치와 형상, 크기를 조절하면서 한계 온도조건을 만족할 때까지 설계 엔지니어의 판단에 의존하여 열해석을 반복하는 것이 보편적인 방식이다. 대부분 방열판 면적을 줄이기 위한 추가적인 노력을 하지 않기 때문에 필요 이상의 과도한 방열판 설계를 하는 경우가 많은 것이 사실이다. 이러한 방열판 설계에서 최소한의 방열판 면적을 사용하여 한계 온도를 만족하도록 설계를 최적화 한다면 무엇보다 전체 위성 열설계의 효율성과 경제성을 높일 수 있는 바탕이 될 수 있을 것이다. 위성의 방열판 설계는 방열판 영역 내에서 동일한 면적을 가지더라도 위치나 형상에 따라 그 효과가 상당히 차이가 날 수 있기 때문에 실제 방열판 설계에서는 이러한 점을 고려하는 것이 필수적이다. 먼저 위성은 열해석에 알맞는 격자 크기로 분할된 노드로 이루어진 열모델로 모델링되어 개발된다. 방열판이 설계되는 방열판 영역 역시 격자 모양의 노드로 분할되기 때문에 열해석을 이용하여 방열판 설계를 한다면 노드 크기를 기준으로 노드 분할 형태에 따라 설계를 한다. 그래서 위성 열모델에서 방열판 영역의 각 노드가 방열판 노드 여부에 따라 모자이크와 같은 분포의 방열판 설계를 하게 되므로 방열판 노드 분포의 최적화가 방열판 최적 설계를 의미하게 된다. 본 연구에서는 방열판 설계 최적화를 위해 일반적인 위성 프로그램의 열제어 개발에서 사용하는 위성 열모델과 열해석 프로그램을 최적화 기법과 동일한 언어로 다시 개발해야 하는 부담 없이 그대로 최적화 기법과 연동할 수 있도록 하는 방법을 제안하고, 실제 소형의 검증용 위성 열모델을 개발하여 여러 가지 해석 조건에 따른 방열판 최적 설계 결과를 비교하고 검토함으로써 이러한 접근 방식을 검증해보고자 하였다.

  • PDF

공급사슬 최적화를 위한 다중의 수리적 모델 활용 구조 (Integrating Multiple Mathematical Models for Supply Chain Optimization)

  • 한현수
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2001년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2001
  • 제조 기업의 가치사슬 최적화를 위한 전략적, 운영상 의사결정 문제는 수리적 모델을 이용한 DSS의 효과적인 활용을 통하여 해결 될 수 있다. 의사결정 프로세스는 필연적으로 공급사슬의 여러 성과 목표와 관련 조직간의 Trade-off 및 연계관계(Interaction)가 고려되므로 복수의 DSS 활용이 필요하게 된다. 이와 관련하여 본 논문에서는 공급 사슬 전체의 최적화를 위한 다수의 전략적 목표 및 의사결정 프로세스, 연계된 수리적 모델들을 정의하고, 관련 조직 및 성과 지표 별 부분적 최적화(Local Optimality)를 지양하고 전체최적화 (Global Optimality)를 달성하기 위한 DSS Logic을 철강산업 프로세스를 대상으로 수리적 모델들의 분할(Decomposition) 및 통합개념을 통하여 제시하였다.

  • PDF

심층신경망 및 베이지안 최적화 기반 패키지 휨 최적화 시간 단축 (Time Reduction for Package Warpage Optimization based on Deep Neural Network and Bayesian Optimization)

  • 이중언;권대일
    • 마이크로전자및패키징학회지
    • /
    • 제31권3호
    • /
    • pp.50-57
    • /
    • 2024
  • 최근 대리 모델에 머신 러닝 기술을 접목하여 복잡한 설계에 대한 최적화를 빠르게 달성하는 방법론이 활발히 연구되고 있다. 훈련된 머신 러닝 대리 모델은 복잡한 유한요소해석 시뮬레이션 대비 컴퓨팅 자원을 적게 소모하면서 동일한 해석 결과를 출력할 수 있다. 또한 훈련된 모델에 최적화를 결합하면 반복 시뮬레이션 대비 더 빠르게 최적의 설계 변수를 도출할 수 있다. 본 연구에서는 패키지 휨을 최소화하는 설계 변수 조합을 효과적으로 탐색하기 위하여 심층신경망과 베이지안 최적화를 적용하였다. 심층신경망 모델은 유한요소해석 시뮬레이션으로 획득한 설계 변수-휨 데이터셋을 바탕으로 훈련하였고, 해당 모델에 베이지안 최적화를 적용하여 휨을 최소화하는 최적의 설계 변수를 탐색하였다. 구축한 심층신경망 및 베이지안 최적화 모델은 실제 시뮬레이션 결과와 99% 이상 일치하는 동시에, 최적 설계 변수 탐색에 소요되는 시간은 15초에 불과하여, 1회의 시뮬레이션과 비교해도 57% 이상 최적화 시간을 단축할 수 있다.

미등록어 거절 알고리즘에서 가우시안 모델 최적화를 이용한 신뢰도 정규화 향상 (In Out-of Vocabulary Rejection Algorithm by Measure of Normalized improvement using Optimization of Gaussian Model Confidence)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권12호
    • /
    • pp.125-132
    • /
    • 2010
  • 어휘 인식에서는 인식 학습 시 나타나지 않는 미 출현 트라이 폰이 존재하며, 이들 시스템에서는 모델 파라미터들의 초기 추정치를 생성하지 못하고 음소 데이터에 대한 모델을 구성할 수 없는 단점으로 인하여 가우시안 모델의 정확성을 확보하지 못하게 된다. 이를 개선하기 위하여 확률 분포를 이용한 모델 파라미터의 가우시안 모델 최적화 방법을 제안한다. 확률 분포의 가우시안 모델을 최적화하여 가우시안 모델의 정확성을 제공하고, 음소 단위로 데이터의 탐색을 지원하여 신뢰도가 향상되었다. 제안된 방법의 성능 평가를 위하여 실제 다양한 미등록어가 관측될 수 있는 대상으로 실험을 수행하였으며 본 연구에서 제안한 정규화 신뢰도를 이용한 미등록어 거절 알고리즘이 기존의 방법들에 비하여 평균 1.7%의 성능향상을 나타내었다.

축소모델과 RLSE를 이용한 최적화 적응형 제어구조 설계 (Design of Optimized Adaptive PID Control Structures by means of Model Reduction and RLSE)

  • 최정내;조준호;황형수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2525-2527
    • /
    • 2005
  • 큰 지연시간을 갖는 고차계 시스템에 대하여 일반적으로 적용할 수 있는 PID 제어기의 동조방법중 한 가지 방법으로써 축소모델을 이용하는 방법이 있다. 이 방법은 큰 지연시간을 갖는 고차계 공정을 SOPTD(Second Order Plus Time Delay Model)로 축소를 하여 SOPTD의 고정된 형태의 모델에 대하여 PID 제어기를 동조하는 방법이다. SOPTD로 모델을 축소하는 방법과 최적화 PID 파라미터를 동조하는 방법이 제시되었다. 본 논문에서는 기존의 최적화 PID 제어구조에 RLSE를 추가하여 실시간으로 축소모델의 계수를 보정해주는 최적화 적응형 PID 제어구조를 제안하였고, 기존의 제어구조보다 우수한 적응성을 가짐을 시뮬레이션을 통하여 보였다.

  • PDF