• Title/Summary/Keyword: 최적화질

Search Result 205, Processing Time 0.027 seconds

A Comparative Study on broadcasting video quality using PSNR in IPTV Network Adopted Transition Mechanism (트랜지션 메카니즘이 적용된 IPTV Network에서 PSNR을 이용한 방송화질 측정 연구)

  • Kim, Kwang-Hyun;Park, Seung-Seob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.156-166
    • /
    • 2010
  • Development of IP network technology creates new service which applying to fusion technologies such as IPTV, VoIP, and so on. Especially, Next generation IP is called IPv6 which will solve the lack of IP. IPv6 is very important on IPTV which needs best quality of service about security, QoS, and bandwidth. In this paper, we constructed experimental network, measured PSNR which computes the peak signal-to-reconstructed video measurement in experimental network environment, analyzed PSNR value. And as a result of measurement, we, Propose optimum network environment for IPTV service provider and transition mechanism designer.

Evaluation of the Usefulness for Air Gap Technique in Digital Magnification Mammography (디지털 유방확대촬영술에서 Air gap technique의 유용성 평가)

  • Kim, Mi-Young
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • The purpose of this study was investigated optimal exposure condition in digital magnification mammography to decrease radiation dose and increase image quality of the examinee. Auto mode, the average glandular dose is higher than the manual mode. Average glandular dose and image quality were many differences on between grid and air gap technique in auto mode. However, Average glandular dose and signal-to-noise ratio were not different on between grid and air gap technique in manual mode. The signal-to-noise ratio was increased when using the air-gap technique in both mode. According to result, air gap technique may reduce average glandular dose and increase signal-to-noise ratio in digital magnification mammography.

Fuzzy Quantization and Rate Control for Very Low Bit­rate Video Coder (초저전송율 동영상 부호기를 위한 퍼지 양자화 및 율 제어에 관한 연구)

  • 양근호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1684-1690
    • /
    • 2003
  • In this paper, we proposed a fuzzy controller for the evaluation of the quantization Parameters in the H.263 coder to optimize the subjective quality of each coded frame, keeping the transmission rate constant. We adopted the Mamdani method for fuzzification and the centroid method for defuzzification. The energy and entropy are correlated to features of the HVS in spatial domain, while motion vectors are used to estimate the temporal characteristics of the signal. And then, the fuzzy inputs adapted the variance and the entropy in spatial domain, and the motion vector in temporal domain. We induced the fuzzy membership function and decided the fuzzy relevance to be compatible in visual characteristics. And then, we designed FAM banks. The fuzzy technology has been applied to a practical video compression. This results is obtained an effective rate control technique, an optimum bit allocation and a high subjective quality using fuzzy quantization.

Fast Mode Decision Algorithm for Scalable Video Coding (SVC) Using Directional Information of Neighboring Layer (스케일러블 비디오 코딩에서 방향성 정보를 이용한 모드 결정 고속화 기법)

  • Jung, Hyun-Ki;Hong, Kwang-Soo;Kim, Byung-Gyu;Kim, Chang-Ki;Yoo, Jeong-Ju
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.108-121
    • /
    • 2012
  • As Scalable Video Coding (SVC) is a video compression standard extended from H.264/AVC, it is a way to provide scalability in terms of temporal, spatial and quality. Although the compression efficiency of SVC is increased due to the scalability in many aspect, it is essential to reduce the complexity in order to efficiently use because the complexity is relatively increased. To reduce the complexity of SVC in the paper, we propose fast mode decision algorithm to reduce the complexity of encoding process using direction information of B-picture by efficiently performing inter-layer prediction. The proposed algorithm is a fast mode decision algorithm that makes different from detection mode number of forward and backward, bi-direction in the way using best mode of base-layer up-sampled after simply SKIP mode detection using the direction information of best mode of base-layer up-sampled. The experimental results show that the proposed algorithm approach can achieve the maximum computational time saving about 53% with almost no loss of rate distortion (RD) performance in the enhancement layer.

Oxidation and Removal of NO Emission from Ship Using Hydrogen Peroxide Photolysis (과산화수소 광분해를 이용한 선박 배가스 내 NO 산화흡수에 관한 연구)

  • Lee, Jae-Hwa;Kim, Bong-Jun;Jeon, Soo-Bin;Cho, Joon-Hyung;Kang, Min-Kyoung;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • Air pollution associated with the $NO_x$ emission from the ship engines is becoming one of the major environmental concerns these days. As the regulations on ship pollutants are strengthened, the wet absorption method, for controlling complex pollutants in a confined space, has the advantage of simultaneously removing various pollutants, but the low solubility of nitrogen monoxide is drawback. In this study, for improving existing denitrification scrubber system, NO oxidation process by hydroxyl radical produced from irradiating UV light on $H_2O_2$ is suggested and the $H_2O_2$ decomposition rates and hydroxyl radical quantum yields were measured to find the optimum condition of $H_2O_2$ photolysis reaction. As a result, the optimum quantum yield and photolysis rate of $H_2O_2$ were 0.8798, $0.6mol\;h^{-1}$ at 8 W, 2 M condition, and oxidation efficiency of 1000 ppm NO gas was 40%. In batch system, NO removal efficiency has a range of 65.0 ~ 67.3% according to input gas concentration of 100 ~ 1500 ppm. This results indicate that the scrubber system using hydrogen peroxide photolysis can be applied as air pollution prevention facility of ship engines.

Characterization of Deep Learning-Based and Hybrid Iterative Reconstruction for Image Quality Optimization at Computer Tomography Angiography (전산화단층촬영조영술에서 화질 최적화를 위한 딥러닝 기반 및 하이브리드 반복 재구성의 특성분석)

  • Pil-Hyun, Jeon;Chang-Lae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • For optimal image quality of computer tomography angiography (CTA), different iodine concentrations and scan parameters were applied to quantitatively evaluate the image quality characteristics of filtered back projection (FBP), hybrid-iterative reconstruction (hybrid-IR), and deep learning reconstruction (DLR). A 320-row-detector CT scanner scanned a phantom with various iodine concentrations (1.2, 2.9, 4.9, 6.9, 10.4, 14.3, 18.4, and 25.9 mg/mL) located at the edge of a cylindrical water phantom with a diameter of 19 cm. Data obtained using each reconstruction technique was analyzed through noise, coefficient of variation (COV), and root mean square error (RMSE). As the iodine concentration increased, the CT number value increased, but the noise change did not show any special characteristics. COV decreased with increasing iodine concentration for FBP, adaptive iterative dose reduction (AIDR) 3D, and advanced intelligent clear-IQ engine (AiCE) at various tube voltages and tube currents. In addition, when the iodine concentration was low, there was a slight difference in COV between the reconstitution techniques, but there was little difference as the iodine concentration increased. AiCE showed the characteristic that RMSE decreased as the iodine concentration increased but rather increased after a specific concentration (4.9 mg/mL). Therefore, the user will have to consider the characteristics of scan parameters such as tube current and tube voltage as well as iodine concentration according to the reconstruction technique for optimal CTA image acquisition.

Comparison of Ultrasound Image Quality using Edge Enhancement Mask (경계면 강조 마스크를 이용한 초음파 영상 화질 비교)

  • Jung-Min, Son;Jun-Haeng, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.157-165
    • /
    • 2023
  • Ultrasound imaging uses sound waves of frequencies to cause physical actions such as reflection, absorption, refraction, and transmission at the edge between different tissues. Improvement is needed because there is a lot of noise due to the characteristics of the data generated from the ultrasound equipment, and it is difficult to grasp the shape of the tissue to be actually observed because the edge is vague. The edge enhancement method is used as a method to solve the case where the edge surface looks clumped due to a decrease in image quality. In this paper, as a method to strengthen the interface, the quality improvement was confirmed by strengthening the interface, which is the high-frequency part, in each image using an unsharpening mask and high boost. The mask filtering used for each image was evaluated by measuring PSNR and SNR. Abdominal, head, heart, liver, kidney, breast, and fetal images were obtained from Philips epiq5g and affiniti70g and Alpinion E-cube 15 ultrasound equipment. The program used to implement the algorithm was implemented with MATLAB R2022a of MathWorks. The unsharpening and high-boost mask array size was set to 3*3, and the laplacian filter, a spatial filter used to create outline-enhanced images, was applied equally to both masks. ImageJ program was used for quantitative evaluation of image quality. As a result of applying the mask filter to various ultrasound images, the subjective image quality showed that the overall contour lines of the image were clearly visible when unsharpening and high-boost mask were applied to the original image. When comparing the quantitative image quality, the image quality of the image to which the unsharpening mask and the high boost mask were applied was evaluated higher than that of the original image. In the portal vein, head, gallbladder, and kidney images, the SNR, PSNR, RMSE and MAE of the image to which the high-boost mask was applied were measured to be high. Conversely, for images of the heart, breast, and fetus, SNR, PSNR, RMSE and MAE values were measured as images with the unsharpening mask applied. It is thought that using the optimal mask according to the image will help to improve the image quality, and the contour information was provided to improve the image quality.

The Review of Exposure Index in Digital Radiography and Image Quality (디지털 영상에서 화질관리에 관한 노출지수(EI)의 유용성 연구)

  • Yang, Sook;Han, Jae Bok;Choi, Nam Gil;Lee, Seong Gil
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • The aim of this study was to determine the correlation between exposure index (EI) and dose factors related to radiation dose optimization in digital radiography (DR) system. Two phantoms with built-in regional test object for quantitative assessment of images were used to produce image signals that acquired in chest radiography background. EI and entrane surface dose (ESD) increased proportionally with rise of radiation dose (kVp, mAs) in both DR and CR systems. Especially, DR detector was effective to form good contrast and hence, reached easily to improvement of image quality with minimal dose changes. It made operators possible to expect the accuracy of EI values deeply related to absorbed dose of the detector. The evaluation of images was obtained specially employed calculation of noise to signal ratio (NSR) and contrast to noise ratio (CNR). These measurements were performed for how exposure factors affect image quality. NSR was inversely proportional to kVp and mAs and low NSR represented high signal detection efficiency. Consequently, EI values was the measure of the amount of exposure received by the image receptor and it was proportional to exposure factors. Therefore the EI in a recommended range from manufacturer can offer optimal image quality. Also, continuous monitoring of EI values in the digital radiography can reduce the unnecessary patient dose and help the quality control of the system.

Fast Intra Prediction Mode Decision Algorithm Using Directional Gradients For H.264 (방향성 기울기를 이용한 H.264를 위한 고속 화면내 예측 모드 결정 알고리즘)

  • Han, Hwa-Jeong;Jeon, Yeong-Il;Han, Chan-Hee;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.1-8
    • /
    • 2009
  • H.264/AVC video coding standard uses the rate distortion optimization method which determines the best coding mode for macroblock(MB) to improve coding efficiency. Whereas RDO selects the best coding mode, it causes the heavy computational burden comparing with previous standards. To reduce the complexity, in this paper, a fast intra prediction mode decision algorithm using directional gradients is proposed. The proposed algorithm is composed of 2-path structure. In the first path, $16{\times}16$ intra prediction mode is determined using directional gradients. In the second path, 3 modes instead of 9 modes are chosen for RDO to decide the best mode for $4{\times}4$ block. Finally, the two modes determined in the two-path decision process are compared to decide the final block mode. Experimental results show that the computation time of the proposed method is decreased to about 77% of the exhaustive mode decision method with negligible quality loss.

Progressive transmission using optimum bit-ordering of DCT coded image (DCT 부호화 영상의 최적 비트 정렬에 의한 점진적 전송)

  • 채종길
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.679-684
    • /
    • 1994
  • Progressive transmission using optimum bit-ordering of discrete cosine transform(DCT) coded image is proposed to reconstruct a better image in a few bits among all the coded bits at the receiver. It is to transmit the bit gradually to reduce the distrotion of the reconstructed image most by transmitting one more bit. To do this, the power transfer factor(PTF) which is the squared value of difference between the reconstruction level of embedded quantizer and another reconstruction level made by transmitting one more bit is defined. And then, the transmission order of bits is obtained by sorting the PTFs of the coded bits. As a results, the proposed method can reconstruct image having less distortion and better quality at the same bit rate than the conventional zig-zag scan.

  • PDF