• 제목/요약/키워드: 최적화모델

검색결과 2,991건 처리시간 0.027초

모델의 사전 확률 추정을 이용한 HMM 구조의 최적화 (HMM Topology Optimization using Model Prior Estimation)

  • 하진영;박미나
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.325-327
    • /
    • 2001
  • 본 논문은 온라인 문자 인식을 연속 밀도 HMM의 구조의 최적화 문제를 다룬다. 최적이란 최소한의 모델 파라미터를 사용하여 최소한의 오류를 허용하는 것이라고 정의할 수 있다. 본 연구에서는 HMM 구조의 최적화를 위해 Bayesian 모델 선택 방법론을 사용한다. 먼저 잘 알려진 BIC(Bayesian Information Criterion)을 적용해보고, 그것을 HMM의 복잡한 구조에 적합하도록 본 논문에서 제안한 HBIC(HMM-Oriented BIC)와 비교해본다. BIC는 모델의 사전 확률 분포를 추정하지 않고 다변량 정규분포라고 가정하는데 비해 HBIC는 모델의 각 파라미터로부터 사전 확률을 추정한 후 그것들을 사용함으로써 더 좋은 결과를 얻도록 한다. 실험 결과 BIC와 HBIC 둘 다 기존 방법보다 모델의 파라미터 수를 현저히 감소시킴을 확인했고, HBIC가 BIC에 비해 더 적은 수의 파라미터를 사용해도 비슷한 인식률을 얻을 수 있었다.

  • PDF

쿠멘 생산 공정의 경제성 최적화를 위한 샘플링 및 추정법의 비교 (Comparison of Sampling and Estimation Methods for Economic Optimization of Cumene Production Process)

  • 백종배;이기백
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.564-573
    • /
    • 2014
  • 이 연구는 벤젠과 프로필렌의 기상반응을 통해 쿠멘을 생산하는 쿠멘 생산 공정의 경제성 최적화에 대한 것이다. 최적화의 목적함수는 제품 판매 이득에서 자본비용, 유틸리티 비용, 원료 비용을 뺀 연간 조업이득이고, 설계변수는 6개이다. 설계변수의 변화에 따른 조업이득의 계산을 위해 Unisim Design과 Matlab을 연동하였다. 최적화는 3단계로 수행되었다. 설계변수를 샘플링한 후 조업이득 데이터를 얻고, 이 데이터로부터 설계변수와 조업이득의 관계를 추정 모델로 표현하고, 이 모델을 이용하여 최적화하였다. 추정모델로는 반응표면법에서 사용되는 2차 회귀 다항식과 비선형 모델인 support vector regression을 비교하였다. 설계변수의 샘플링 방법으로는 중심합성계획과 Hammersley 순차 추출법을 비교하였다. 각각 얻어진 모델을 이용한 최적화 결과, 추정방법으로는 SVR이, 샘플링 방법은 Hammersley 순차추출법이 더 정확하였다. 최적화된 조업이득은 연간 17.96 MM$로, 기준 조건에서의 연간 16.04 MM$에 비해 12% 증가하였다.

레이디얼 베이시스 함수망을 이용한 플라즈마 식각공정 모델링 (Modeling of plamsa etch process using a radial basis function network)

  • 박경영;김병환;이병택
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1129-1133
    • /
    • 2004
  • 반도체공정 최적화에 소요되는 시간과 경비를 줄이기 위해 신경망 모델이 개발되고 있다. 주로 역전파 신경망을 이용하여 모델이 개발되고 있으며, 본 연구에서는 Radial Basis Function Network (RBFN)을 이용하여 플라즈마 식각공정 모델을 개발한다. 실험데이터는 유도결합형 플라즈마를 이용한 Silicon Carbide 박막의 식각공정으로부터 수집되었다. 모델개발을 위해 $2^4$ 전인자 (full factorial) 실험계획법이 적용되었으며, 모델에 이용된 식각응답은 식각률과 atomic force microscopy로 측정한 식각표면 거칠기이다. 모델검증을 위해 추가적으로 16번의 실험을 수행하였다. RBFN의 예측성능은 세 학습인자, 즉 뉴런수, width, 초기 웨이트 분포 (initial weight distribution-IWD) 크기에 의해 결정된다. 본 연구에서는 각 학습인자의 영향을 최적화하였으며, IWD의 불규칙성을 고려하여 주어진 학습인자에 대해서 100개의 모델을 발생하고, 이중 최소의 IWD를 갖는 모델을 선택하였다. 최적화한 식각률과 표면거칠기 모델의 RMSE는 각기 26 nm/min과 0.103 nm이었다. 통계적인 회귀모델과 비교하여, 식각률과 표면거칠기 모델은 각기 52%와 24%의 향상된 예측정확도를 보였다. 이로써 RBFN이 플라즈마 공정을 효과적으로 모델링 할 수 있음을 확인하였다.

  • PDF

자바 메모리 모델을 이용한 멀티 스레드 자바 코드 검증 (Verification for Multithreaded Java Code using Java Memory Model)

  • 이민;권기현
    • 정보처리학회논문지D
    • /
    • 제15D권1호
    • /
    • pp.99-106
    • /
    • 2008
  • 최신의 컴파일러는 실행 속도를 높이기 위해서 최적화 작업을 수행한다. 그러나 최적화 작업 중에 프로그램 구문의 실행 순서가 바뀔 수 있다. 단일 스레드 소프트웨어 에서는 최적화가 실행 결과에 영향을 주지 않지만 멀티 스레드 소프트웨어에서는 최적화로 인해서 기존의 실행 과정을 계산하는 방법으로는 설명할 수 없는 실행 결과가 발생할 수 있다. 이 문제점을 해결하기 위해서 자바 메모리 모델이 제안되었다. 자바 메모리 모델은 구문의 재배치를 고려하여 멀티 스레드 소프트웨어의 가능한 실행 과정을 명세하고 있다. 현재 자바 메모리 모델은 자바의 표준 메모리 모델로 정의되어 있다. 하지만 대부분의 멀티스레드 소프트웨어 검증 도구는 자바 표준 메모리 모델인 자바 메모리 모델 대신에 순차 일관성메모리 모델만을 고려하고 있다. 순차 일관성 메모리모델에서는 구문의 재배치를 고려하지 않는다. 본 논문에서는 자바 메모리 모델을 이용한 소프트웨어 모델 체킹 기법을 설명한다. 이를 이용하여 기존 소프트웨어 검증 도구인 JavaPathFinder 에서 오류가 없다고 한 소프트웨어의 오류를 찾아내었다.

기상풍황자료 통계적 분석을 통한 한국형 해상풍력터빈 설치지점 선정 최적화 연구 (Numerical Optimization of Foundation place for Domestic Offshore Wind Turbine by using Statistical Models for Wind Data Analysis)

  • 이기학;전상욱;구요천;박경현;이동호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.404-408
    • /
    • 2007
  • 현재 국내에서 운용중인 풍력발전시스템은 국내 풍력자원에 대한 정확한 정보의 부재와 국내 풍황에 맞지 않는 국외 모델을 그대로 운용하는 등의 몇 가지 문제를 드러내었다. 본 연구의 목적은 국내 연안의 해상에서 한국형 해상풍력터빈을 설치하기 위한 잠재적 최적위치와 풍황자료 산출 최적화 알고리즘을 구현하는 것이다. 최적화 알고리즘은 얕은 수심 분포와 연안에서의 거리를 제약조건으로 하고 최대 에너지밀도를 가진 지점을 구하는 것으로 정식화하였다. 풍황자료 산출을 위해서 국내 연안의 해상 풍황자료를 포함하는 기상풍황자료를 통계적 모델로 분석하여 바람지도를 작성하였다. 이 바람지도를 이용하여 지질 통계학 분야의 관측기법인 크리깅 모델을 구성하고, 전역최적화기법인 유전자알고리즘을 이용하여 제약조건을 만족하는 최대에너지밀도값과 그 위치를 도출하였다. 수치최적화 결과 우리나라 풍력 자원의 대략적인 잠재량과 현황파악이 가능하였고, 해상풍력발전단지가 조성 가능한 개략적인 위치를 예측할 수 있었다.

  • PDF

유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증 (Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating)

  • 정대성;김철영
    • 한국지진공학회논문집
    • /
    • 제10권6호
    • /
    • pp.19-28
    • /
    • 2006
  • 기존의 유한요소모델개선기법들은 측정에 의한 모달 데이터와 해석적으로 계산된 시스템 행렬로 구성된 수학적인 목적함수를 사용하거나 업데이팅 변수에 관한 모달 특성의 미분함수를 사용하여야만 한다. 따라서 교량구조물과 같은 복잡한 구조물에의 적용이 어렵고 역해석에 있어 해의 안정성 문제가 발생할 수 있다. 또한 개선된 모델이 물리적인 의미를 지니지 못할 수도 있다. 본 논문에서는 유전자알고리즘과 Welder-Mead의 심플렉스기법을 사용한 하이브리드 최적화 유한요소모델개선기법을 제안하였다. 하이브리드 최적화 기법의 성능을 검증하기 위해 3개의 국부최소값과 1개의 전체최소값을 갖는 Goldstein-Price 함수를 사용하여 비선형문제에 대한 적용성을 검토하였다. 또한 최적화목적함수의 영향을 검토하기 위해 10개의 자유도를 갖는 스프링-질량 모델을 사용하여 변수연구를 수행하였다. 최종적으로 수치해석을 통해서 질량과 강성을 동시에 개선하기 위한 최적화 목적함수를 제시하고, 제안된 하이브리드 최적화 기법이 유한요소모델개선을 위해 매우 효과적인 방법임을 입증하였다.

메타모델을 이용한 복합재료 구조물의 최적 설계 (Optimum Design of Composite Structures using Metamodels)

  • 이재훈;강지호;홍창선;김천곤
    • Composites Research
    • /
    • 제16권4호
    • /
    • pp.36-43
    • /
    • 2003
  • 본 논문에서는 메타모델을 이용한 복합재 구조물의 지적화가 수행되었다. 일반적으로 복합재 구조물에서 시간이 오래 걸리는 해석의 결과를 최적화하고자 할 때 전체 최적화에 많은 시간이 든다. 따라서 이와 같은 구조물 해석을 메타 모델로 치환해 보았다. 본 연구에서는 RSM, kriging과 같은 메타모델을 사용하였다. 복합재 평판의 최종 파손 강도 해석을 메타모델을 이용해 근사화하였다 최종 파손 강도를 최대화하는 최적화를 유전자 알고리즘과 메타로델을 이용해 수행하였다.

베이지안 최적화를 이용한 이동 경로 예측 모델의 성능 개선 (Improving Trajectory Pattern Prediction Model Using Bayesian Optimization)

  • 송하윤;남세현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.846-849
    • /
    • 2020
  • 하이퍼파라미터(초매개변수) 최적화란 모델의 학습에 앞서 미리 설정해야 하는 값인 하이퍼파라미터의 최적값을 탐색하는 문제이다. 이때의 최적값은 학습을 끝낸 모델의 성능을 가능한 최대치로 높이게 하는 값이다. 한편, 최근 모바일 장치를 이용한 포지셔닝 데이터의 대량 수집이 가능해지면서 이를 활용하여 위치 기반 서비스(Location-Based Service)를 위한 데이터 분석 및 예측에 관한 연구가 활발히 이루어졌다. 그중 이동 경로를 이미지로 패턴화하여 국소 지역 내에서 다음 위치를 예측하는 CNN 모델에 대해서 하이퍼파라미터 튜닝을 진행하였다. 결과적으로 베이지안 최적화(Bayesian Optimization)를 통해 모델의 성능을 평균 3.7%, 최대 9.5%까지 개선할 수 있음을 확인하였다.

3-자유도 헬리콥터 시스템의 입자군집최적화 기법을 이용한 시스템 식별 (A Study on Identification using Particle Swarm Optimization for 3-DOF Helicopter System)

  • 이호운;김태우;김태형
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.105-110
    • /
    • 2015
  • 본 연구는 Quanser사의 3-자유도 헬리콥터 시스템에 대한 종래의 선형 수리 모델을 개선한 수리 모델을 제안하고, 실험을 통해 제안된 수리 모델을 기반으로 설계된 제어기의 제어 성능을 종래의 수리 모델을 기반으로 설계된 제어기의 제어 성능과 비교함으로써 그 타당성을 검증한다. 이에 대한 연구 진행 과정은 다음과 같다. 첫째, 3-자유도 헬리콥터 시스템의 동 특성을 분석하고, 종래의 선형 수리 모델을 구축한다. 둘째, 종래의 수리 모델의 구축을 위해 수행된 선형화 과정에서 제거된 비선형적 요소들을 파악한다. 그리고 이 제거된 비선형적 요소들에 대응하는 파라미터들을 추가하여 개선된 수리 모델을 구축한다. 이 때, 수리 모델을 구축하기 위해 메타 휴리스틱 전역 최적화 기법인 입자군집최적화 알고리즘을 이용한다. 마지막으로, 제안된 모델을 기반으로 제어기를 설계하고, 이를 종래의 수리 모델을 기반으로 설계된 제어기의 제어 성능을 비교하여 제안된 수리 모델의 타당성을 검증한다.

회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석 (Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.299-304
    • /
    • 2023
  • 인공지능 기법 중에서 딥러닝은 많은 곳에서 사용되어 효과가 입증된 모델이다. 하지만, 딥러닝 모델이 모든 곳에서 효과적으로 사용되는 것은 아니다. 이번 논문에서는 회귀분석과 딥러닝 모델의 비교를 통하여 딥러닝 모델이 가지는 한계점을 보여주고, 딥러닝 모델의 효과적인 사용을 위한 가이드를 제시하고자 한다. 추가로 딥러닝 모델의 최적화를 위해 사용되는 다양한 기법 중, 많이 사용되는 데이터 정규화와 데이터 셔플링 기법을 실제 데이터를 기반으로 비교 평가하여 딥러닝 모델의 정확성과 가치를 높이기 위한 기준을 제시하고자 한다.