본 논문에서는 해집단을 다음세대로 진화시킬 때, 유전알고리즘과 진화전략을 동시에 사용하고, 적합도에 따라 복제하는 과정에서 유전알고리즘과 진화전략이 적용될 해집단의 비율이 적응적으로 변경되는 적응진화 알고리즘을 제안하였다. 또한 제안한 알고리즘을 실시간 적용하기 위해 PC 클러스터 시스템으로 병렬처리하여 최적해 탐색 성능 및 탐색속도를 개선하였다. 제안한 알고리즘을 참고문헌의 배전계통 재구성 문제에 적용해본 결과, 유전 알고리즘 또는 진화전략을 단독으로 사용한 경우보다 제안한 방법이 더 빠른 시간내에 우수한 최적해를 탐색하였고, 병렬 연산의 수행 노드수 증가에 따라 최적해 탐색성능은 유지하면서 최적해 탐색 시간을 상당히 단축시킴을 확인하였다.
최적조류계산은 전력계통에서 여러가지 제약 조건을 만족하면서 경제적으로 계통을 운영하기 일한 기법이다. 종래의 최적조류계산 방법은 주로 선형계획법, 비선형계획법 같은 수치해석적인 방법을 사용하였다. 그러나, 이러한 방법들은 전역 최적해를 구하기 위해서는 목적함수가 convex해야 한다. 또한 계통 규모가 클 경우, 최적해 수렴이 안되거나 수렴이 되더라도 시간이 많이 걸리는 단점이 있다. 최근에는 이러한 문제를 극복하고자 여러 가지 진화연산기법들이 최적조류계산 문제에 적용되고 있다. 본 논문에서는 최근에 등장한 PSO알고리즘을 이용한 최적조류계산 기법을 소개하고 테스트 계통을 대 상으로 그 적용가능성을 검증하였다.
Abstract :본 논문에서는 관리제어시스템의 동적특성을 허용언어(admissible language) 범위 이내에서 최적화시키는 최적 관리제어기법들을 소개한다. 본 논문에서 주로 다루고자 하는 최적 관리제어기법은 Kumar와 Garg에 의해 제안된 기법과 Cho와 Lim에 의해 제안된 계층적 최적 관리제어기법, 그리고, Sengupta와 Lafortune이 제안한 최적 관리제어기법 등이다. 첫 번째 기법에서는 우선 시스템의 최적화를 위해 고려되고 있는 비용함수(cost function)를 소개한 후, 최대흐름 최소분할생성 정리(max-flow min-cut theorem)를 이용한 최적 관리제어기 설계기법을 제시하고, 이를 부분관측 하에서도 최적 관리제어기를 설계할 수 있도록 확장한다. 그런 후 제시된 설계기법에 의해 설계된 관리제어시스템에서 발생 할 수 있는 문제점들을 지적하고, Cho와 Lim에 의해 제안된 완전 최소분할생성(complete min-cut)이라는 개념을 도입하여 지적된 문제점들을 해결할 수 있는 방법을 제시한다. 또한 시스템의 고장을 고려한 계층적 최적 관리 제어(layered optimal supervisory control)기 법을 소개한다 그리 고 마지막으로 Sengupta와 Lafortune이 제안한 최적 관리제어기법에 대해서 살펴본다.
본 논문에서는 네트워크기반의 클라이언트-서버모델에서 병렬유전자알고리즘의 최적해 수렴속도를 향상시키는 방법을 제안한다. 전역 최적해를 지역 엘리트의 평가만으로 구하는 기존의 방법과는 달리 제안한 방법은 서버에서 지역 엘리트의 평가를 통해 전역 최적해를 구하고 유휴시간에 유전자알고리즘을 적용하여 전역 최적해의 적합도를 개선한다. 서버에서 개선된 전역 최적해를 클라이언트의 유전자알고리즘에서 사용하므로 전체 알고리즘의 최적해 수렴속도가 향상된다 Fmax(g)는 g번째 세대의 최대 적합도, G는 서버에서 개선되는 세대수일 때, 지역 최적해의 이주 시 서버에서 개선되는 적합도는 (equation omitted)(F/sub max/(g)-F/sub max/(g-1)) 이다. 여기서 클라이언트의 수가 증가하면 G가 작아져서 적합도 개선치는 줄어드나 기존의 방법보다 적합도가 개선됨을 확인할 수 있었다.
선체의 구조설계는 최적화 방법을 이용하여 상당히 오래 전부터 최적 구조설계 방법을 사용해 오고 있었으나, 대부분의 경우, 설계변수(設計變數)를 연속적인 실수(實數)로 가정하여 최적해를 구하거나, 아니면 실수(實數)와 정수(整數)가 혼합된 문제에 대해서는 뚜렷한 해결 방안을 제시하지 못하고 있는 실정이다. 특히 최적해의 국부(局部) 최적성 내지는 이산적(離散的) 변수 특성이 있는 최적설계 문제에 대해서는 몇개의 초기치를 사용하여 얻어진 최적해를 상호 비교하여 주어진 문제의 전체적(全體的) 최적해를 구하고자 하였다. 많은 경우 이러한 방법은 확실한 대안이 되지 못하고 본질적인 문제점은 미해결로서 남아 있어 왔다. 그래서 본 연구에서는 생물의 진화 법칙을 모사한 유전적(遺傳的) 알고리즘을 이용하여 선체 구조물의 최적설계시 고려해야 하는 보강재의 갯수를 정수(整數)로 취급하는 문제라든지 판 두께와 같이 이산적(離散的) 특성을 갖는 설계변수 문제 등(等)이 최적설계에 미치는 영향을 검토하여 보다 일반적인 최적화 방법으로서 유전적(遺傳的) 알고리즘의 유용성을 확인하였다.
상수도 관망은 수원에서 수요절점까지 물을 안정적으로 공급하는 것을 목표로 한다. 상수도 관망의 최적설계는 수리학적 제한조건 (절점의 수압, 관로의 유속)을 만족하는 범위에서 비용을 최소화하는 설계안을 얻는 것으로 Savic and Walters (1997)는 유전 알고리즘 (Genetic Algorithms, Holland 1975)을 적용한 상수도 관망 설계 프로그램인 GANET를 제안하였고, Maier et al. (1996)은 개미군집알고리즘 (Ant Colony Optimization Algorithm, Dorigo et al. 1996)을 상수도 관망 최적설계에 적용한 후 그 결과가 유전 알고리즘에 비해 우수함을 증명하는 등 상수도 관망 최적설계에 관한 연구가 활발히 진행되어 오고 있다. 유전알고리즘은 선택, 교차, 돌연변이의 반복계산 과정을 통하여 최적해를 찾는 최적화 기법이다. 이 과정에서 결정변수는 유전자 (Gene)의 집합으로 표현되며, 염색체 (Chromosome) 내에서 근접한 유전 인자들은 일종의 Building Block을 형성하게 된다. Building Block은 좋은 해를 갖는 유전 인자를 높은 확률로 보관하여 지역해에 빠질 가능성을 줄이는 반면, 유전형 (Genotype)이 표현형 (Phenotype)을 충분히 모방하여 표현하지 못한 경우 오히려 최적해의 탐색을 방해할 수 있다는 한계점을 갖는다. 유전 알고리즘을 상수도 관망 최적설계에 적용하였을 때에도 이 한계점은 여실히 드러난다. 관로의 관경을 결정변수로 설정한 후 유전형으로 표현하였을 때, 관망도 상에서 근접하지 않은 두 관로가 염색체 내에서 연속으로 나열된다면 두 관로 간의 연관성이 실제보다 크게 고려되기 때문이다. 한편, 하모니써치 (Harmony Search, Geem et al. 2001) 알고리즘은 즉흥 연주 (Improvisation)를 통해 최상의 화음을 만들어내는 현상으로부터 착안하여 만들어진 최적화기법으로 연산 기법은 무작위선택, 기억회상, 피치조정 등으로 구성되어 있으며, 결정변수에 해당하는 연주자가 독립적으로 행동하며 해를 탐색한다는 점에서 유전알고리즘과 큰 차이를 갖는다. 본 연구에서는 유전알고리즘의 Building Block에 의해 발생하는 오류를 개선하고자, 상수도 관망 최적설계 연구에 많이 사용되는 Hanoi 관망 (Fujiwara and Khang 1990) 관로의 정렬 순서를 여러 가지 기준으로 설정하여 관망데이터를 구축한 후 하모니써치와 유전 알고리즘을 적용하여 최적화를 수행하였고 그 결과를 비교하였다. 그 결과 유전 알고리즘과 달리 하모니써치 알고리즘의 경우, 관로의 나열 순서와 상관없이 우수한 최적해 탐색 결과를 보이는 것을 확인할 수 있었다.
한 개의 모집단으로 구성되는 단순 유전자 알고리즘은 일반적으로 하나의 최적해를 찾는 경우에만 효과적이다. 그러나, 많은 문제들은 여러 개의 최적해를 가질 수 있으며, 그것들 모두를 찾는 것이 중요한 경우가 많다. 이 논문에서는 모집단 내 개체들에 지리적인 이웃의 개념을 부여하여, 각 객체들이 지역적으로 경쟁하면서도 전역적으로 유전자를 교환할 수 있도록 하여, 하나의 모집단이 여러 개의 최적해를 포함하도록 하는 유전자 알고리즘을 제안한다. 또한, 30비트, 6차 바이폴라-디셉티브 함수(bipolar-deceptive function)를 비롯한 여러 개의 최적해를 갖는 다양한 문제들에 적용하여 성능을 평가한다. 마지막으로 제안한 알고리즘에 대한 몇 가지 개선 방향을 제시하였다.
유전자 알고리즘은 염색체 집단을 이용하는 탐색이므로 전역적인 최적해의 탐색 성능은 우수하여 최적해에 근접한 한점까지의 수렴속도는 빠르지만 탐색 메카니즘이 없기 때문에 최적해 근처의 탐색에서는 수렴 속도가 떨어지는 단점이 있고, 역전파 알고리즘은 개체 수준의 탐색이므로 지역적 미세조정의 탐색능력은 우수하지만 전역적 탐색기능이 없어 지역적 최적해로 수렴하는 경우가 있다. 본 논문에서는 수렴 속도가 향상된 윤곽선 추출을 위하여 유전자와 역전파 알고리즘을 병행해서 실행하는 윤곽선 추출방법을 제안하였다. 윤곽선 추출 방법은 먼저 유전자 알고리즘을 이용하여 최적의 연결강도와 오프셋 값을 계산한다. 다음으로 이 값을 역전파 학습 알고리즘 학습의 파라미터의 초기값으로 한 반복 학습으로 최적의 윤곽선 구조를 추출하였다. 제안된 알고리즘은 유전자 알고리즘 또는 역전파 알고리즘 단독으로 실행한 경우보다 수렴속도가 향상된 결과를 보여 주었다.
본 논문은 SUMT와 유전자알고리즘을 근거한 연속 및 이산최적설계 알고리즘에 의한 최적설계 프로그램을 개발하였다. 본 연구의 최적설계는 단동온실 구조물의 단면 연속 및 이산 최적설계가 각각 동시에 수행된다. 본 연구에서 목적함수는 구조물의 중량이고, 제약조건식은 한계상태설계기준에 대한 설계 제한식이다. 설계변수는 원형단면의 직경과 두께이다. 그리고 본 연구의 SUMT 및 유전자 알고리즘에 의한 연속 및 이산화 최적설계 프로그램의 적용을 위해 설계 예를 들었다.
본 논문에서는 할당 문제의 최적해를 간단히 찾을 수 있는 알고리즘을 제안하였다. 일반적으로 할당 문제의 최적해는 Hungarian 알고리즘으로 구한다. 제안된 알고리즘은 Hungarian 알고리즘의 4단계 수행 과정을 1단계로 단축시켰으며, 행과 열의 최소 비용만을 선택하여 비용을 감소시키는 최적화 과정을 거쳐 최적해를 구하였다. 제안된 알고리즘을 27개의 균형 할당 문제와 7개의 불균형 할당 문제에 적용한 결과 유전자 알고리즘으로 찾지 못한 최적해를 찾는데 성공하였다. 제안된 알고리즘은 Hungarian 알고리즘의 수행 복잡도 O($n^3$)을 O(n)으로 향상시켰다. 따라서 제안된 알고리즘은 Hungarian 알고리즘을 대체하여 할당 문제에 일반적으로 적용할 수 있는 알고리즘으로 널리 활용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.