• Title/Summary/Keyword: 최적선정

Search Result 3,175, Processing Time 0.034 seconds

Preparation and Quality Characteristics of the Fermentation product of Ginseng by Lactic Acid Bacteria (FGL) (유산균을 이용한 발효인삼 제조 및 품질 특성)

  • Park, Soo-Jin;Kim, Dong-Hyun;Paek, Nam-Soo;Kim, Sung-Soo
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.88-94
    • /
    • 2006
  • Ginseng as a raw material for production of probiotic ginseng product by lactic acid bacteria (LAB) was evaluated in this study. Either white ginseng (WG) or red ginseng (RG) (1% or 5%, w/v) were directly inoculated with a 24 hold seed culture of twenty seven substrains of four different LAB ($1.0{\times}10^6CFU/ml$); Lactobacillus spp., Streptococcus/Enterococcus spp., Leuconostoc/Lactococcus spp. and Bifidobacterium spp., and incubated at $37^{\circ}C$ for 24 or 48 h. Among 27 kinds of LAB, seven substrains of Lactobacillus (MG208, MG311, MG315, MG501, MG501C, MG505, MG590) and one Bifidobacterium (MG723) were selected based on their dose dependent stimulation of the growth of LAB in the presence of ginseng and changes in pH, acidity and viable cell counts during fermentation were examined. Lactobacillus MG208 specifically was found to show the best growth on 5% RG and reached nearly $14.0{\times}10^8CFU/ml$ after 48 h of fermentation and produced the titratable acidity as $0.84{\pm}0.02%$, whereas the pH was significantly lowered from $6.80{\pm}0.01\;to\;3.42{\pm}0.02$. These results indicated that ginseng can be an appropriate material to prepare the fermentation product by several strains of LAB. Therefore we should further check whether probiotic ginseng product may have synergistic health benefits of both probiotics and ginseng to serve for vegetarians and lactose-allergic consumers.

A study on the optimization of tunnel support patterns using ANN and SVR algorithms (ANN 및 SVR 알고리즘을 활용한 최적 터널지보패턴 선정에 관한 연구)

  • Lee, Je-Kyum;Kim, YangKyun;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.617-628
    • /
    • 2022
  • A ground support pattern should be designed by properly integrating various support materials in accordance with the rock mass grade when constructing a tunnel, and a technical decision must be made in this process by professionals with vast construction experiences. However, designing supports at the early stage of tunnel design, such as feasibility study or basic design, may be very challenging due to the short timeline, insufficient budget, and deficiency of field data. Meanwhile, the design of the support pattern can be performed more quickly and reliably by utilizing the machine learning technique and the accumulated design data with the rapid increase in tunnel construction in South Korea. Therefore, in this study, the design data and ground exploration data of 48 road tunnels in South Korea were inspected, and data about 19 items, including eight input items (rock type, resistivity, depth, tunnel length, safety index by tunnel length, safety index by rick index, tunnel type, tunnel area) and 11 output items (rock mass grade, two items for shotcrete, three items for rock bolt, three items for steel support, two items for concrete lining), were collected to automatically determine the rock mass class and the support pattern. Three machine learning models (S1, A1, A2) were developed using two machine learning algorithms (SVR, ANN) and organized data. As a result, the A2 model, which applied different loss functions according to the output data format, showed the best performance. This study confirms the potential of support pattern design using machine learning, and it is expected that it will be able to improve the design model by continuously using the model in the actual design, compensating for its shortcomings, and improving its usability.

Development of Rainfall-runoff Analysis Algorithm on Road Surface (도로 표면 강우 유출 해석 알고리즘 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Kwak, Chang Jae
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.223-232
    • /
    • 2021
  • In general, stormwater flows to the road surface, especially in urban areas, and it is discharged through the drainage grate inlets on roads. The appropriate evaluation of the road drainage capacity is essential not only in the design of roads and inlets but also in the design of sewer systems. However, the method of road surface flow analysis that reflects the topographical and hydraulic conditions might not be fully developed. Therefore, the enhanced method of road surface flow analysis should be presented by investigating the existing analysis method such as the flow analysis module (uniform; varied) and the flow travel time (critical; fixed). In this study, the algorithm based on varied and uniform flow analysis was developed to analyze the flow pattern of road surface. The numerical analysis applied the uniform and varied flow analysis module and travel time as parameters were conducted to estimate the characteristics of rainfall-runoff in various road conditions using the developed algorithm. The width of the road (two-lane (6 m)) and the slope of the road (longitudinal slope of road 1 - 10%, transverse slope of road 2%, and transverse slope of gutter 2 - 10%) was considered. In addition, the flow of the road surface is collected from the gutter along the road slope and drained through the gutter in the downstream part, and the width of the gutter was selected to be 0.5 m. The simulation results were revealed that the runoff characteristics were affected by the road slope conditions, and it was found that the varied flow analysis module adequately reflected the gutter flow which is changed along the downstream caused by collecting of road surface flow at the gutter. The varied flow analysis module simulated 11.80% longer flow travel time on average (max. 23.66%) and 4.73% larger total road surface discharge on average (max. 9.50%) than the uniform flow analysis module. In order to accurately estimate the amount of runoff from the road, it was appropriate to perform flow analysis by applying the critical duration and the varied flow analysis module. The developed algorithm was expected to be able to be used in the design of road drainage because it was accurately simulated the runoff characteristics on the road surface.

A Comparative Evaluation of Multiple Meteorological Datasets for the Rice Yield Prediction at the County Level in South Korea (우리나라 시군단위 벼 수확량 예측을 위한 다종 기상자료의 비교평가)

  • Cho, Subin;Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Kim, Gunah;Kang, Jonggu;Kim, Kwangjin;Cho, Jaeil;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.337-357
    • /
    • 2021
  • Because the growth of paddy rice is affected by meteorological factors, the selection of appropriate meteorological variables is essential to build a rice yield prediction model. This paper examines the suitability of multiple meteorological datasets for the rice yield modeling in South Korea, 1996-2019, and a hindcast experiment for rice yield using a machine learning method by considering the nonlinear relationships between meteorological variables and the rice yield. In addition to the ASOS in-situ observations, we used CRU-JRA ver. 2.1 and ERA5 reanalysis. From the multiple meteorological datasets, we extracted the four common variables (air temperature, relative humidity, solar radiation, and precipitation) and analyzed the characteristics of each data and the associations with rice yields. CRU-JRA ver. 2.1 showed an overall agreement with the other datasets. While relative humidity had a rare relationship with rice yields, solar radiation showed a somewhat high correlation with rice yields. Using the air temperature, solar radiation, and precipitation of July, August, and September, we built a random forest model for the hindcast experiments of rice yields. The model with CRU-JRA ver. 2.1 showed the best performance with a correlation coefficient of 0.772. The solar radiation in the prediction model had the most significant importance among the variables, which is in accordance with the generic agricultural knowledge. This paper has an implication for selecting from multiple meteorological datasets for rice yield modeling.

Study for Residue Analysis of Herbicide, Clopyralid in Foods (식품 중 제초제 클로피랄리드(Clopyralid)의 잔류 분석법)

  • Kim, Ji-young;Choi, Yoon Ju;Kim, Jong Su;Kim, Do Hoon;Do, Jung Ah;Jung, Yong Hyun;Lee, Kang Bong;Kim, Hyo Chin
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.283-290
    • /
    • 2018
  • BACKGROUND: Pesticide residue analysis is an essential activity in order to establish the food safety of agricultural products. Analytical approaches to the food safety are required to meet internationally the guideline of Codex (Codex Alimentarius Commission, CAC/GL 40). In this study, we developed a liquid chromatograph-tandem mass spectrometer (LC-MS/MS) method to determine the herbicide clopyralid in food matrixes. METHODS AND RESULTS: Clopyralid was extracted with aqueous acetonitrile containing formic acid and the extracts were mixed in a citrate buffer consisted of magnesium sulfate anhydrous, NaCl, sodium citrate dihydrate and disodium hydrogencitrate sesquihydrate followed by centrifugation. The supernatants were filtered through a nylon membrane filter and used for the analysis of clopyralid. The method was validated by accuracy and precision experiments on the samples fortified at 3 different levels of clopyralid. LC-MS/MS in positive mode was employed to quantitatively determine clopyralid in the food samples. Matrix-matched calibration curves were inearranged from 0.001 to 0.25 mg/kg with r2 > 0.994. The limits of detection and quantification were determined to be 0.001 and 0.01 mg/kg, respectively. There covery values of clopyralid for tified at 0.01 mg/kg in the control samples ranged from approximately 82 to 106% with relative standard deviations below 2 0%. CONCLUSION: The method developed in this study meets successfully the Codex guideline for pesticide residue analysis in food samples. This, the method could be applicable to determine pesticides in foods produced domestically and internationally.

Detection of Pine Wilt Disease tree Using High Resolution Aerial Photographs - A Case Study of Kangwon National University Research Forest - (시계열 고해상도 항공영상을 이용한 소나무재선충병 감염목 탐지 - 강원대학교 학술림 일원을 대상으로 -)

  • PARK, Jeong-Mook;CHOI, In-Gyu;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.36-49
    • /
    • 2019
  • The objectives of this study were to extract "Field Survey Based Infection Tree of Pine Wilt Disease(FSB_ITPWD)" and "Object Classification Based Infection Tree of Pine Wilt Disease(OCB_ITPWD)" from the Research Forest at Kangwon National University, and evaluate the spatial distribution characteristics and occurrence intensity of wood infested by pine wood nematode. It was found that the OCB optimum weights (OCB) were 11 for Scale, 0.1 for Shape, 0.9 for Color, 0.9 for Compactness, and 0.1 for Smoothness. The overall classification accuracy was approximately 94%, and the Kappa coefficient was 0.85, which was very high. OCB_ITPWD area is approximately 2.4ha, which is approximately 0.05% of the total area. When the stand structure, distribution characteristics, and topographic and geographic factors of OCB_ITPWD and those of FSB_ITPWD were compared, age class IV was the most abundant age class in FSB_ITPWD (approximately 55%) and OCB_ITPWD (approximately 44%) - the latter was 11% lower than the former. The diameter at breast heigh (DBH at 1.2m from the ground) results showed that (below 14cm) and (below 28cm) DBH trees were the majority (approximately 93%) in OCB_ITPWD, while medium and (more then 30cm) DBH trees were the majority (approximately 87%) in FSB_ITPWD, indicating different DBH distribution. On the other hand, the elevation distribution rate of OCB_ITPWD was mostly between 401 and 500m (approximately 30%), while that of FSB_ITPWD was mostly between 301 and 400m (approximately 45%). Additionally, the accessibility from the forest road was the highest at "100m or less" for both OCB_ITPWD (24%) and FSB_ITPWD (31%), indicating that more trees were infected when a stand was closer to a forest road with higher accessibility. OCB_ITPWD hotspots were 31 and 32 compartments, and it was highly distributed in areas with a higher age class and a higher DBH class.

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.

Development of Stand Yield Table Based on Current Growth Characteristics of Chamaecyparis obtusa Stands (현실임분 생장특성에 의한 편백 임분수확표 개발)

  • Jung, Su Young;Lee, Kwang Soo;Lee, Ho Sang;Ji Bae, Eun;Park, Jun Hyung;Ko, Chi-Ung
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.477-483
    • /
    • 2020
  • We constructed a stand yield table for Chamaecyparis obtusa based on data from an actual forest. The previous stand yield table had a number of disadvantages because it was based on actual forest information. In the present study we used data from more than 200 sampling plots in a stand of Chamaecyparis obtusa. The analysis included theestimation, recovery and prediction of the distribution of values for diameter at breast height (DBH), and the result is a valuable process for the preparation ofstand yield tables. The DBH distribution model uses a Weibull function, and the site index (base age: 30 years), the standard for assessing forest productivity, was derived using the Chapman-Richards formula. Several estimation formulas for the preparation of the stand yield table were considered for the fitness index, and the optimal formula was chosen. The analysis shows that the site index is in the range of 10 to 18 in the Chamaecyparis obtusa stand. The estimated stand volume of each sample plot was found to have an accuracy of 62%. According to the residuals analysis, the stands showed even distribution around zero, which indicates that the results are useful in the field. Comparing the table constructed in this study to the existing stand yield table, we found that our table yielded comparatively higher values for growth. This is probably because the existing analysis data used a small amount of research data that did not properly reflect. We hope that the stand yield table of Chamaecyparis obtusa, a representative species of southern regions, will be widely used for forest management. As these forests stabilize and growth progresses, we plan to construct an additional yield table applicable to the production of developed stands.

A Study on the Structural Reinforcement of the Modified Caisson Floating Dock (개조된 케이슨 플로팅 도크의 구조 보강에 대한 연구)

  • Kim, Hong-Jo;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.172-178
    • /
    • 2021
  • In the ship repair market, interest in maintenance and repair is steadily increasing due to the reinforcement of prevention of environmental pollution caused by ships and the reinforcement of safety standards for ship structures. By reflecting this effect, the number of requests for repairs by foreign shipping companies increases to repair shipbuilders in the Southwest Sea. However, because most of the repair shipbuilders in the southwestern area are small and medium-sized companies, it is difficult to lead to the integrated synergy effect of the repair shipbuilding companies. Moreover, the infrastructure is not integrated; hence, using the infrastructure jointly is a challenge, which acts as an obstacle to the activation of the repair shipbuilding industry. Floating docks are indispensable to operating the repair shipbuilding business; in addition, most of them are operated through renovation/repair after importing aging caisson docks from overseas. However, their service life is more than 30 years; additionally, there is no structure inspection standard. Therefore, it is vulnerable to the safety field. In this study, the finite element analysis program of ANSYS was used to evaluate the structural safety of the modified caisson dock and obtain additional structural reinforcement schemes to solve the derived problems. For the floating docks, there are classification regulations; however, concerning structural strength, the regulations are insufficient, and the applicability is inferior. These insufficient evaluation areas were supplemented through a detailed structural FE-analysis. The reinforcement plan was decided by reinforcing the pontoon deck and reinforcement of the side tank, considering the characteristics of the repair shipyard condition. The final plan was selected to reinforce the side wing tank through the structural analysis of the decision; in addition, the actual structure was fabricated to reflect the reinforcement plan. Our results can be used as reference data for improving the structural strength of similar facilities; we believe that the optimal solution can be found quickly if this method is used during renovation/repair.