DOI QR코드

DOI QR Code

Development of Rainfall-runoff Analysis Algorithm on Road Surface

도로 표면 강우 유출 해석 알고리즘 개발

  • Jo, Jun Beom (Department of Advanced Industrial Science) ;
  • Kim, Jung Soo (Department of Civil Engineering, Buchoen University) ;
  • Kwak, Chang Jae (Disaster Information Research Division, National Disaster Management Research Institute)
  • 조준범 (구마모토대학교 광역환경보전공학) ;
  • 김정수 (부천대학교 토목과) ;
  • 곽창재 (국립재난안전연구원 방재연구실)
  • Received : 2021.11.08
  • Accepted : 2021.12.05
  • Published : 2021.12.31

Abstract

In general, stormwater flows to the road surface, especially in urban areas, and it is discharged through the drainage grate inlets on roads. The appropriate evaluation of the road drainage capacity is essential not only in the design of roads and inlets but also in the design of sewer systems. However, the method of road surface flow analysis that reflects the topographical and hydraulic conditions might not be fully developed. Therefore, the enhanced method of road surface flow analysis should be presented by investigating the existing analysis method such as the flow analysis module (uniform; varied) and the flow travel time (critical; fixed). In this study, the algorithm based on varied and uniform flow analysis was developed to analyze the flow pattern of road surface. The numerical analysis applied the uniform and varied flow analysis module and travel time as parameters were conducted to estimate the characteristics of rainfall-runoff in various road conditions using the developed algorithm. The width of the road (two-lane (6 m)) and the slope of the road (longitudinal slope of road 1 - 10%, transverse slope of road 2%, and transverse slope of gutter 2 - 10%) was considered. In addition, the flow of the road surface is collected from the gutter along the road slope and drained through the gutter in the downstream part, and the width of the gutter was selected to be 0.5 m. The simulation results were revealed that the runoff characteristics were affected by the road slope conditions, and it was found that the varied flow analysis module adequately reflected the gutter flow which is changed along the downstream caused by collecting of road surface flow at the gutter. The varied flow analysis module simulated 11.80% longer flow travel time on average (max. 23.66%) and 4.73% larger total road surface discharge on average (max. 9.50%) than the uniform flow analysis module. In order to accurately estimate the amount of runoff from the road, it was appropriate to perform flow analysis by applying the critical duration and the varied flow analysis module. The developed algorithm was expected to be able to be used in the design of road drainage because it was accurately simulated the runoff characteristics on the road surface.

일반적으로 도심지에서의 유출은 도로 노면을 따라 유출되어 빗물받이를 통해 우수관거로 배수된다. 따라서 적절한 도로 배수능력의 평가는 도로와 빗물받이 뿐만 아니라 우수관거의 설계에서도 필수적이다. 하지만 도시 도로부의 지형학적 및 수리학적 조건을 반영한 흐름해석 방안에 대한 명확한 기준이 제시되어 있지 못한 실정이다. 그러므로 기존에 적용되던 흐름해석 모형(등류/ 부등류) 및 도달시간 산정방법 (임계/고정)을 분석하여 최적의 도로의 흐름해석 방안이 제시되어야 한다. 본 연구에서는 도로 표면 흐름해석을 위한 알고리즘을 개발하고 등류와 부등류 흐름해석 모형 및 도달시간 산정방법을 매개변수로 적용한 수치적 분석을 수행하여 다양한 도로조건에서의 강우 유출특성을 모의하였다. 도로조건은 국내의 설계기준을 고려하여 2차선 도로의 폭 (6 m)과 경사 (도로 종경사 1 - 10%, 도로 노면경사 2% 및 측구 횡경사 2 - 10%)가 고려되었다. 또한, 도로 표면의 흐름은 노면경사를 따라 측구에서 차집되어 하류부의 빗물받이를 통해 배수되도록 하였으며, 측구의 폭은 0.5 m로 선정하였다. 모의 결과 도로의 유출특성은 도로 경사 조건에 따라 민감하게 변화하였으며, 부등류 해석모형이 도로의 하류부로 강우가 차집되며 변화하는 측구부에서의 유출특성을 반영하여 등류 흐름해석 모형에 비해 최대 23.66%, 평균 11.80% 긴 도달시간과 최대 9.50%, 평균 4.73% 작은 도로 표면 총 유출량을 나타냈다. 따라서, 우수 유출량을 산정하기 위하여 도달시간을 강우의 지속시간으로 반영하는 임계지속시간을 적용한 부등류 흐름해석을 수행하는 것이 적합하다고 판단되었다. 개발된 알고리즘은 다양한 흐름해석 기법을 통합하여 도로 노면에서의 유출특성을 정밀하게 모의하고 있으므로 도로의 배수 설계에 활용이 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음 (과제번호 21CTAP-C163760-01).

References

  1. American Association of State Highway and Transportation Officials (AASHTO). 2014. Drainage Manual, AASHTO, Washington, D.C.
  2. Aranda, J.A., Beneyto, C., Sanchez-Juny, M. and Blade, E. 2021. Efficient Design of Road Drainage Systems. Water 13(12): 1661. https://doi.org/10.3390/w13121661
  3. Chaudhry, M.H. 2007. Open-channel flow. Springer Science & Business Media.
  4. Escarameia, M., Gasowski, Y., May, R. and Lo Cascio, A. 2001. Hydraulic capacity of drainage channels with lateral inflow.
  5. Federal Highway Administration (FHWA). 2013. Urban drainage design manual. Hydraulic engineering circular No. 22, 4-47.
  6. Graber, S.D. 2013. Numerical Investigation of Flow in Triangular Gutters. Journal of irrigation and drainage engineering 139(2): 165-172. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000524
  7. Institute of Public Works Engineering Australasia (IPWEA) 2017. Queensland Urban Drainage Manual (QUDM). Queensland Government.
  8. Izzard, C.F. and Hicks, W.I. 1947. Hydraulics of runoff from developed surfaces. In Highway Research Board Proceedings (Vol. 26).
  9. Jo, J.B., Kim, J.S. and Yoon, S. E. 2018. Experimental estimation of the head loss coefficient at surcharged four-way junction manholes. Urban Water Journal 15(8): 780-789. https://doi.org/10.1080/1573062x.2018.1547408
  10. Kim, J.S., Jo, J.B. and Yoon, S.E. 2018. Head loss reduction in surcharged four-way junction manholes. Water 10(12): 1741. https://doi.org/10.3390/w10121741
  11. Kim, J.S., Kwak, C.J. and Jo, J.B. 2021. Enhanced method for estimation of flow intercepted by drainage grate inlets on roads. Journal of Environmental Management 279: 111546.
  12. Lee, J.Y. and Jun, K.W. 2014. Analysis of Runoff Based on Unit Hydrograph Using XP-SWMM. Crisisonomy 10(8): 51-62. (in Korean)
  13. Lee, S.H., Kim, J.S. and Kim, S.J. 2021. Analysis of Applicability of the Detention in Trunk Sewer for Reducing Urban Inundation. Ecology and Resilient Infrastructure 8(1): 44-53. (in Korean)
  14. Lee, J.Y. and Kim, J.S. 2020. ROC Analysis of Topographic Factors in Flood Vulnerable Area considering Surface Runoff Characteristics. Ecology and Resilient Infrastructure 7(4): 327-335. (in Korean)
  15. Li, X., Fang, X., Chen, G., Gong, Y., Wang, J. and Li, J. 2019. Evaluating curb inlet efficiency for urban drainage and road bioretention facilities. Water 11(4): 851. https://doi.org/10.3390/w11040851
  16. Liu, J.L., Wang, Z.Z., Leng, C.J. and Zhao, Y.F. 2012. Explicit equations for critical depth in open channels with complex compound cross sections. Flow Measurement and Instrumentation 24: 13-18. https://doi.org/10.1016/j.flowmeasinst.2011.12.005
  17. Ministry of Environment (MOE). 2018. Design criteria of sewer facilities. (in Korean)
  18. Ministry of Land, Infrastructure and Transport (MOLIT). 2020. The Guideline of Design and Maintenance Management for Drainage Facilities of Roads. (in Korean)
  19. Ministry of Land, Infrastructure and Transport (MOLIT). 2021. Pedestrian Road Installation and Management Guideline. (in Korean)
  20. Naqvi, M.M. 2003. Design of linear drainage systems. Thomas Telford.
  21. Rhodes, D.G. 1998. Gradually varied flow solutions in Newton-Raphson form. Journal of irrigation and drainage engineering 124(4): 233-235. https://doi.org/10.1061/(ASCE)0733-9437(1998)124:4(233)
  22. Smith, K.V. 1967. Control point in a lateral spillway channel. Journal of the Hydraulics Division 93(3): 27-34. https://doi.org/10.1061/JYCEAJ.0001633
  23. Vatankhah, A.R. and Easa, S.M. 2011. Explicit solutions for critical and normal depths in channels with different shapes. Flow Measurement and Instrumentation 22(1): 43-49. https://doi.org/10.1016/j.flowmeasinst.2010.12.003
  24. Wang, Z. 1998. Formula for calculating critical depth of trapezoidal open channel. Journal of Hydraulic Engineering 124(1): 90-91. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(90)
  25. Wang, J., Zhao, M., Tu, N., Li, X., Fang, X., Li, J., ... and Su, D. 2021. Curb Inlet Efficiency Evaluation under Unsteady Rainfall Situations Based on Full-Scale Rainfall-Runoff Experiments. Journal of Hydrologic Engineering 26(2): 04020061. https://doi.org/10.1061/(asce)he.1943-5584.0002038