• Title/Summary/Keyword: 최적배합설계

Search Result 140, Processing Time 0.029 seconds

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.

Reducing Thermal Cracking of Mat-foundation Mass Concrete Applying Different Mix Designs for Upper and Lower Placement Lifts (상하부 배합을 달리함에 의한 기초 매트 매스콘크리트의 수화열 균열저감)

  • Han, Cheon-Gu;Kim, Min-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this research, considering the practical conditions at field, thermal cracking reducing method was suggested based on the comparative analysis between predicted value and actual value obtained from the actual structure member with optimum mix design. The optimum mix design was deduced from the various mix designs with various proportions of cementitious binder for upper and lower placement lifts of mat-foundation mass concrete. Therefore, before field applications, the mix designs were obtained from the theoretical analysis obtained by MIDAS GEN for upper lift was OPC to FA of 85 to 15, and for lower lift was OPC to FA to BS of 50 : 20 : 30. Based on this mix design, the actual concrete for field was determined and all concrete properties were reached within the predicted range. Especially, the temperature properties of mass concrete at core was approximately $39^{\circ}C$ of temperature difference for low-heat mix design, while approximately $54^{\circ}C$ was shown for normal mix design currently used. Additionally, in the case of cracking index, the low heat mix design showed about 1.4 of relatively high value while the normal mix design showed 1.0. Therefore, it can be stated that applying low heat mix design and different heating technique between upper and lower placement lifts for mass concrete are efficient to control the thermal cracking.

The Quality Characteristics of Beef Sausage with the Addition of Gynura procumbens (명월초 가루를 첨가한 우육 소시지의 최적화 연구)

  • Park, Young Il;Jeong, Hee Sun;Joo, Nami
    • Korean journal of food and cookery science
    • /
    • v.31 no.4
    • /
    • pp.395-404
    • /
    • 2015
  • The aims of this study were to determine the optimal mixing condition for two different amounts of Gynura procumbens powder and olive oil for the preparation of beef sausage. The experiments were designed according to the central composite design of response surface methodology, which showed 10 experimental points including two replicates of Gynura procumbens powder and olive oil. The physicochemical and mechanical characteristics as well as the sensory properties were measured, and these values were applied to the mathematical optimization models. The results of the physiochemical and mechanical analysis of each sample, including chewiness, cohesiveness, color a, color b, moisture content, salinity and heating loss showed significant differences. The sensory measurements were significantly different in color, flavor, tenderness, texture and overall quality. The optimum formulation, which was calculated using the numerical and graphical method, was determined to be 2.1 g Gynura procumbens powder and 7.06 g of olive oil.

Mechanical Properties of Lean-mixed Cement-treated Soil for Effective Reuse of Dredged Clay (준설점토의 친환경 재활용을 위한 시멘트계 처리토의 장단기 역학거동)

  • Kwon, Youngcheul;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.71-78
    • /
    • 2011
  • Cement treating technique, such as deep mixing method, has been used widely to stabilize the dredged clayey soil for many years. Despite of its effectiveness in treating soil by cement, several efforts have also been made to try to reduce the side effect of the cement that used to stabilize the dredged clay. However, authors considered that more detailed study on the physical and mechanical properties of lean-mixed soil-cement has been required to establish the design procedure to apply the practical problems. Therefore, in this study, the curing time and mixing ratio was used as key parameters to estimate the physical and mechanical properties including long-term behavior. The unconfined strength of lean-mixed soil-cement increase continuously during curing period, 270 days, while increasing rate becomes low in ordinary cement-treated dredged clay. We also concluded that cement-treated dredging clay shows apparent quasi overconsolidation behavior even in low cement proportion. By this study, fundamental approach was carried out for effective reuse of very soft dredged clayey soil both in mechanical and environmental aspect. It can be also expected that this study can propose a basic design data to use the lean-mixed soil cement.

An Experimental Study for Crack Prevention of Floor Mortar (바닥용 모르타르의 균열방지를 위한 실험적 연구)

  • 정재동;최응규;김진근;이칠성;이상순
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.167-175
    • /
    • 1996
  • Recently, the mortar crack on floor is very serious in construction field, e.g. the crack due to plastic shrinkage and the crack due to drying shrinkage. To prevent this kind of crack, optimum mix proportions not only satisfying the required workability but also minimizing the unit water content were selected. And the expansion admixtures were used to compensate shrmkage of mortar. The water /cement ratio used in construction field is about 64% by the investigation. Even if the water /cement ratio of mortar is reduced, floor mortar is still able to have the required workability by the appropriate use of the fine aggregate with high fineness mo'dulus and superplastizer. The equations hetween mortar flow and water /cement ratio, sand /cement ratio, fineness modulus of fine aggregate were proposed in this study. And the proposed equation may provide available mix proportions of floor mortar.

Numerical Web Model for Quality Management of Concrete based on Compressive Strength (압축강도 기반의 콘크리트 품질관리를 위한 웹 전산모델 개발)

  • Lee, Goon-Jae;Kim, Hak-Young;Lee, Hye-Jin;Hwang, Seung-Hyeon;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.195-202
    • /
    • 2021
  • Concrete quality is mainly managed through the reliable prediction and control of compressive strength. Although related industries have established a relevant datasets based on the mixture proportions and compressive strength gain, whereas they have not been shared due to various reasons including technology leakage. Consequently, the costs and efforts for quality control have been wasted excessively. This study aimed to develop a web-based numerical model, which would present diverse optimal values including concrete strength prediction to the user, and to establish a sustainable database (DB) collection system by inducing the data entered by the user to be collected for the DB. The system handles the overall technology related to the concrete. Particularly, it predicts compressive strength at a mean accuracy of 89.2% by applying the artificial neural network method, modeled based on extensive DBs.

Design and Implementation of Real-Time Mobile Remicon Quality Management Program for Field Response of Remicon mixer (레미콘 배합의 현장 즉시 대응을 위한 실시간 모바일 레미콘 품질 관리 프로그램 설계 및 구현)

  • Kim, Suyeon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.111-117
    • /
    • 2019
  • In this paper, we propose a mobile remicon quality management system to enable inspection and correspondence with a smart phone in the field check of remicon. We also proposed a real-time slump data processing part to digitize field inspection and XML formats for data exchange with the server. We used the smart phone to transmit real-time image about field inspection of remicon and judged the error at the same time. By doing this, we shared the situation of the remicon products in the field and the head office. Based on the actual results, the development technology is used to determine whether the product is abnormal or not, and to provide appropriate information to the company and the site. Based on the analysis of raw material quality data, it is possible to present real time optimal blending ratio according to raw material import with raw material management data, which is the biggest problem of the ready mixed concrete industry.

Concrete Strength Prediction Neural Network Model Considering External Factors (외부영향요인을 고려한 콘크리트 강도예측 뉴럴 네트워크 모델)

  • Choi, Hyun-Uk;Lee, Seong-Haeng;Moon, Sungwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.7-13
    • /
    • 2018
  • The strength of concrete is affected significantly not only by the internal influence factors of cement, water, sand, aggregate, and admixture, but also by the external influence factors of concrete placement delay and curing temperature. The objective of this research was to predict the concrete strength considering both the internal and external influence factors when concrete is placed at the construction site. In this study, a concrete strength test was conducted on the 24 combinations of internal and external influence factors, and a neural network model was constructed using the test data. This neural network model can predict the concrete strength considering the external influence factors of the concrete placement delay and curing temperature when concrete is placed at the construction site. Contractors can use the concrete strength prediction neural network model to make concrete more robust to external influence factors during concrete placement at a construction site.

Structural Performance of Reinforced Concrete Beams Strengthened with Sprayed Fiber Reinforced Polymers (Sprayed FRP로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Lee, Kang-Seok;Son, Young-Seon;Lee, Moon-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.421-431
    • /
    • 2007
  • The main purpose of this study is to develop a sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing one of the carbon or glass chopped fibers and one of the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of the sprayed FRP, this study carried out tensile tests of the material specimens, which were changed with the combinations of various variables including the length of chopped fiber and the mixture ratio of chopped fiber and resin. These variables were set to have the equal material strength, compared with that of one layer of the FRP sheet. As a result, the optimal length of glass and carbon chopped fibers was fumed out to be 38 mm, and the optimal mixture ratio between chopped fiber and resin was also turned out to be 1 : 2 from each variable. And also, the thickness of the sprayed FRP to have the equal strength to one layer of the FRP sheet was finally calculated. In is study, a series of experiments were carried out to evaluate the strengthening effects of flexural beams, shear beams and damaged beams strengthened with the sprayed FRP method, respectively. The results revealed that the strengthening effects of the flexural and shear specimens were reasonably similar to those of the FRP sheet, and the developed Sprayed FRP technique is able to be used as a strengthening scheme of existing RC building.

Optimal Mix Proportion of Steel Fiber and Hybrid Fiber Reinforced Concrete Using Harmony Search (화음탐색법을 이용한 강섬유 및 하이브리드 섬유보강 콘크리트의 최적배합 설계)

  • Lee, Chi-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.280-283
    • /
    • 2004
  • Today, the guide line of the SFRC mix design and the construction was not embodied, and the convenience of the practical application on the spot is not good. In this research, hence, the program which is optimized to result the mix proportion by the flexural strength and toughness, was developed to apply with ease SFRC on the practical spot. This program would minimize the number of trial mixes and achieve an economical and appropriate mixture. In addition, the theoretical background on which the program is based, will be the basis of the embodied method to mixing SFRC. New algorithm, in this research, was used to develop the mix proportioning program of SFRC. The new algorithm is the Harmony Search which is the heuristic method mimicking the improvisation of music players. And, beside to single fiber reinforced concrete, it was developed the program about the hybrid fiber reinforced concrete that two kinds of steel fibers, which have the different geometry, was reinforced. This will be able to keep the world trend to study, hence, offers the basis of the next generation research.

  • PDF