본 논문에서는 주성분 회귀법과 부분최소자승 회귀법을 비교하여 보여준다. 이 비교의 목적은 선형형태를 보유한 근적외선 분광 데이터의 분석에 사용할 수 있는 적합한 예측 방법을 찾기 위해서이다. 두 가지 데이터 마이닝 방법론인 주성분 회귀법과 부분최소자승 회귀법이 비교되어 질 것이다. 본 논문에서는 부분최소자승 회귀법은 주성분 회귀법과 비교했을 때 약간 나은 예측능력을 가진 결과를 보여준다. 주성분 회귀법에서 50개의 주성분이 모델을 생성하기 위해서 사용지만 부분최소자승 회귀법에서는 12개의 잠재요소가 사용되었다. 평균제곱오차가 예측능력을 측정하는 도구로 사용되었다. 본 논문의 근적외선 분광데이터 분석에 따르면 부분최소자승회귀법이 선형경향을 가진 데이터의 예측에 가장 적합한 모델로 판명되었다.
Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.189-193
/
2005
기존의 회귀식을 사용하거나 새로 유도하여 사용하는 경우 모두 일반적으로 회귀분석의 특성을 간과하고 사용하는 경우가 종종 발생한다. 일반적으로 자료들에서 구해진 회귀식은 분명히 독립변수와 종속변수가 구분되어 유도되었음에도 불구하고 이 식을 사용함에 있어서는 간혹 그 구분을 무시하고 역으로 적용하는 경향이 있었다. 그러나, 독립$\cdot$종속변수가 서로 바뀌면, 연직거리의 잔차들로부터 유도되는 기존의 회귀분석에 의하여, 회귀식이 서로 달라지기 때문에 역으로 적용하여서는 안된다. 이를 해결하기 본 연구에서는 상호변수 최소자승 회귀분석법을 제안하였다. 이론적 내용을 검토를 위해 임진강 영평천의 영중수위표 지점의 2001-2003년의 유량측정자료와 수위-유량곡선을 비교 분석하였다. 결론적으로 상호변수 회귀분석을 사용하면, 기존의 잘못 사용해온 관행을 해소할 수 있을 것이다.
토브라마이신은 그람음성균 감염에 사용하는 아미노글리코사이드계 항생제로 이독성 및 신독성 등의 부작용과 큰 개인차로 혈중농도 모니터를 통한 투여계획이 필요한 약물이다. 본 연구에서는 16명의 위암환자에서 비선형 최소자승 회귀분석과 베이시안 분석에 의한 토브라마이신의 약물동태에 분석오차의 영향에 대하여 연구하였다. 약물투여는 토브라마이신 1-2 mg/kg을 30분에 걸쳐 8시간 간격으로 등속 주입하였으며, 혈액 채취는 정상상태에 도달되었다고 판단되는 첫 약물투여 72시간 후에, 약물 주입 5분전과 주입이 끝난 뒤 30분과 2시간에서 세차례 채취하였다. 혈청중 약물농도는 형광편광면역법으로 측정 하였다. 분석오차를 위해 0, 1, 2, 4, 8 및 12 ${\mu}g/mL$에 해당하는 토브라마이신 혈중농도(C)을 네차례 측정하여 각 혈중농도의 표준편차 (SD)을 구하였다. 토브라마이신 분석오차를 구하기 위한 다항식이 SD = 0.0224+0.0540C+0.00173C2, $R^2$ = 0.935이었다. 이 식에서 구한 SD 값으로 분석시 가중치를 주었을 때, 비선형 최소자승 회귀분석에 의한 토브라마이신의 약물동태학적 파라메타 ($V_d$, $K_{el}$, $K_{slpoe}$, $t_{1/2}$)에 유의성있는 영향을 주었으나, 베이시안 분석에 의한 토브라마이신의 약물동태학적 파라메타에는 영향이 없었다. 이 다항식으로 부터 구한 분석오차를 토브라마이신의 비선형 최소자승 회귀분석을 이용한 약물동태 연구 및 파라메타 분석에 적용하여 좀 더 정확한 투여용량을 결정할 수 있으며, 더 나아가 토브라마이신 약물동태 시뮬레이션 연구에 응용할 수 있다.
아미카신은 그람음성균 감염에 사용하는 아미노글리코사이드계 항생제로 이독성 및 신독성 등의 부작용과 큰 개인차로 혈중농도 모니터를 통한 투여계획이 필요한 약물이다. 본 연구에서는 16명의 위암환자에서 비선형최소자승 회귀분석과 베이시안 분석에 의한 아미카신의 약물동태에 분석오차의 영향을 연구하였다. 약물투여는 아미카신 7.5 mg/kg을 30분에 걸쳐 12시간 간격으로 등속 주입하였으며, 혈액 채취는 정상상태에 도달되었다고 판단되는 첫 약물투여 72시간 후에, 약물 주입 5분전과 주입이 끝난 뒤 30분과 2시간에서 세차례 채취하였다. 혈청중 약물농도는 형광편광면역법으로 측정하였다. 분석오차를 위해 0, 5, 15, 30, 60 및 $80\;{\mu}g/ml$에 해당하는 아미카신 혈중농도(C)을 네차례 측정하여 각 혈중농도의 표준편차 (SD)을 구하였다 아미카신 분석오차를 위한 다항식이 $SD=0.3017+(0.00538C)+(0.00112C^2)$, $R^2=0.974$이었다 이 식에서 구한 SD 값으로 분석시 가중치를 주었을 때, 비선형최소자승 회귀분석에 의한 아미카신의 약물동태학적 파라메타($V_d$, $K_{el}$, $K_{slpoe}$, $t_{1/2}$)에 유의성있는 영향을 주었으나, 베이시안 분석에 의한 아미카신의 약물동태학적 파라메타에는 영향이 없었다. 이 다항식에 의한 분석오차를 비선형최소자승 회귀분석에 의한 아미카신 약물동태학적 파라메타 분석시 적절히 사용하면 안전하고 효율적인 투여계획을 할 수 있다.
Journal of the Korean Data and Information Science Society
/
v.11
no.2
/
pp.235-245
/
2000
In this paper, we consider the Regression Quantiles Estimators in nonlinear regression models. This paper provides the sufficient conditions for strong consistency and asymptotic normality of proposed estimation and drives asymptotic relative efficiency of proposed estimatiors with least square estimation. We give some examples and results of Monte Carlo simulation to compare least square and regression quantile estimators.
KSCE Journal of Civil and Environmental Engineering Research
/
v.6
no.4
/
pp.43-52
/
1986
With increasing of computer use, a least squares method is now widely used in the regression analysis of various data. Unreliable results of regression coefficients due to the floating point of computer and problems of ordinary least squares method are described in detail. To improve these problems, a least squares method using orthogonal function is developed. Also, Comparison and analysis are performed through an example of numerical test, and re-orthogonalization method is used to increase the accuracy. As an example of application, the optimum order of AR process for the time series of monthly flow at the Pyungchang station is determined using Akaike's FPE(Final Prediction Error) which decides optimum degree of AR process. The result shows the AR(2) process is optimum to the series at the station.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.21
no.7
/
pp.61-67
/
2007
The load forecasting has been an important part of power system Accordingly, it has been proposed various methods for the load forecasting. The load patterns of the special days is quite different than those of ordinary weekdays. It is difficult to accurately forecast the load of special days due to the insufficiency of the load patterns compared with ordinary weekdays, so we have proposed fuzzy least squares linear regression algorithm for the load forecasting. In this paper we proposed four models for fuzzy least squares linear regression. It is separated by coefficients of fuzzy least squares linear regression equation. we compared model of H1 with H4 and prove it H4 has accurately forecast better than H1.
Journal of the Korean Data and Information Science Society
/
v.22
no.5
/
pp.931-940
/
2011
Classification is to generate a rule of classifying objects into several categories based on the learning sample. Good classification model should classify new objects with low misclassification error. Many types of classification methods have been developed including logistic regression, discriminant analysis and tree. This paper presents a new classification method using penalized partial least squares. Penalized partial least squares can make the model more robust and remedy multicollinearity problem. This paper compares the proposed method with logistic regression and PCA based discriminant analysis by some real and artificial data. It is concluded that the new method has better power as compared with other methods.
주식 수익률이 정상적 과정이 아니라 비정상적 과정에 의해서 생성되고 있다는 사실이 여러 실증 분석에서 제시되고 있다. 시계열의 평균이 시간의 흐름에 따라 변하면 이 시계열은 비정상적 과정에 의하여 생성된다. 시간의 흐름에 따라 평균이 변하는 비정상 시계열은 단위근과 공적분에 의하여 시계열의 운동을 모형화하고 있다. 한편 시계열의 비정상성은 분산이 시간의 흐름에 따라 변할 때에도 발생한다. 시간의 흐름에 따라 무조건부 분산은 변하지 않고 있지만 이용 가능한 정보 집합을 조건으로 하는 조건부 분산이 변하는 경우도 있다. 이 같은 성질을 가진 주가 시계열은 자기회귀 조건부 이분산(ARCH) 계통의 과정으로 모형화하고 있다. 그러나 무조건부 분산이 시간의 흐름에 따라 변하면 ARCH 계통은 중대한 모형정립과오(misspecification)에 직면하게 된다. 따라서 본 논문은 무조건부 분산이 시간의 흐름에 따라 변할 때 자기 회귀 과정의 모수를 추정하는 방법을 검토하고, 이 방법을 한국 종합주가 지수에 적용하여 자기회귀 과정의 모수를 추정하였다. 이 방법에 의하여 추정된 2계 자기회귀 과정의 모수값 중 상수항과 제1계 항의 계수는 통상 최소자승법에 의한 값과 유사하다. 그러나 제2계 항 모수의 값은 양자가 상당히 다르다. 최소자승에 의한 제2계 값이 과대 추정되고 있다.
전력 수요 예측은 전력 수급 안정과 양질의 전력을 공급하기 위한 필수 기법이며 경쟁적인 전력시장에서 전력요금과 밀접한 관련이 있다. 그러므로, 경쟁적인 전력시장 구조하의 시장 참여자에게 있어서 전력 수요 예측은 매우 관심 있는 사항이다. 최근의 전력 수요 예측 기법으로 예측한 오차율을 살펴보면 평일과는 다르게 특수일의 전력 수요예측은 평균 5%를 상회하는 수준으로 예측의 정확도가 평일 예측에 비해 크게 낮은데 이유는 특수일이 평일에 비하여 부하의 크기가 다소 낮게 나타나고 특수일 마다 계절적인 차이가 있으며 각각의 특수일 마다 고유한 부하의 특성이 있으므로 과거 데이터를 이용할 때 동일 특수일을 이용하게 되며 따라서 평일과는 다르게 일년 단위로 과거 데이터 값들이 취득되므로 오차율이 커진다. 따라서 데이터들을 퍼지화하여 선형계획법을 수행하여 평균 $2{\sim}3%$ 정도의 우수한 결과를 도출한 바 있다. 본 논문에서는 퍼지 선형회귀분석법을 이용한 예측 기법에 최소자승법을 도입하여 특수일 전력 수요예측의 정확도를 개선하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.