• Title/Summary/Keyword: 최선의 설명에로의 추론

Search Result 5, Processing Time 0.016 seconds

A Vindication of Induction by Practical Inference (실천추론에 의한 귀납의 정당화)

  • Lee, Byeong-Deok
    • Korean Journal of Logic
    • /
    • v.12 no.2
    • /
    • pp.59-88
    • /
    • 2009
  • According to David Hume, a deductive demonstration for inductive inference is not possible, because inductive inference is not deductive; and an inductive demonstration for inductive inference is not possible either, because such a demonstration is circular. Thus, on his view, there is no way of justifying inductive inference. Ever since Hume raised this problem of induction, a fair number of philosophers have tried to solve it. Nevertheless there is still no solution which is plausible enough to receive wide endorsement. According to Wilfrid Sellars, we cannot justify inductive inference by any theoretical reasoning; we can vindicate it only by a certain sort of practical reasoning. In this paper, I defend this Sellarsian proposal by developing and explaining it.

  • PDF

Applying Neuro-fuzzy Reasoning to Go Opening Games (뉴로-퍼지 추론을 적용한 포석 바둑)

  • Lee, Byung-Doo
    • Journal of Korea Game Society
    • /
    • v.9 no.6
    • /
    • pp.117-125
    • /
    • 2009
  • This paper describes the result of applying neuro-fuzzy reasoning, which conducts Go term knowledge based on pattern knowledge, to the opening game of Go. We discuss the implementation of neuro-fuzzy reasoning for deciding the best next move to proceed through the opening game. We also let neuro-fuzzy reasoning play against TD($\lambda$) learning to test the performance. The experimental result reveals that even the simple neuro-fuzzy reasoning model can compete against TD($\lambda$) learning and it shows great potential to be applied to the real game of Go.

  • PDF

Exploring the Relationships between Inquiry Problems and Scientific Reasoning in the Program Emphasized Construction of Problem: Focus on Inquiry About Osmosis (문제의 구성을 강조한 프로그램에서 나타난 탐구 문제와 과학적 추론의 관련성 탐색 -삼투 현상 탐구 활동을 중심으로-)

  • Baek, Jongho
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.77-87
    • /
    • 2020
  • Scientific inquiry has emphasized its importance in various aspects of science learning and has been performed according to various methods and purposes. Among the various aspects of science learning, it is emphasized to develop core competencies with science, such as scientific thinking. Therefore, it is necessary to support students to be able to formulate scientific reasoning properly. This study attempts to explore problem-finding and scientific reasoning in the process of performing scientific inquiry. This study also aims to reveal what factors influence this complex process. For this purpose, this study analyzed the inquiry process and results performed by two groups of college students who conducted the inquiry related to osmosis. To analyze, research plans, presentations, and group interviews were used. As a result, it was found that participants used various scientific reasoning, such as deductive, inductive, and abductive reasoning, in the process of problem finding for their inquiry about osmosis. In the process of inquiry and reasoning complexly, anomalous data, which appear regularly, and the characteristics of experimental instruments influenced their reasoning. Various reasons were produced for the purpose of constructing the best explanation about the phenomena observed by participants themselves. Finally, based on the results of this study, several implications for the development context of programs using scientific inquiry are discussed.

창의성과 비판적 사고

  • Kim, Yeong Jeong
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.4
    • /
    • pp.80-80
    • /
    • 2002
  • The main thesis of this article is that the decisive point of creativity education is the cultivation of critical thinking capability. Although the narrow conception of creativity as divergent thinking is not subsumed under that of critical thinking, the role of divergent thinking is not so crucial in the science context of creative problem-solving. On the contrary, the broad conception of creativity as focusing on the reference to utility and the third conception of creativity as a process based on the variation and combination of existing pieces of information are crucial in creative problem-solving context, which are yet subsumed under that of critical thinking. The emphasis on critical thinking education is connected with the characteristics of contemporary knowledge-based society. This rapidly changing society requires situation-adaptive or situation-sensitive cognitive ability, whose core is critical thinking capability. Hence, the education of critical thinking is to be centered on the learning of blowing-how and procedural knowledge but not of knowing-that and declarative knowledge. Accordingly, the learning of critical thinking is to be headed towards the cultivation of competence but not just of performance. In conclusion, when a rational problem-solving through critical and logical thinking turns out consequently to be novel, we call it creative thinking. So, creativity is an emergent property based on critical and logical thinking.

창의성과 비판적 사고

  • 김영정
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.4
    • /
    • pp.81-90
    • /
    • 2002
  • The main thesis of this article is that the decisive point of creativity education is the cultivation of critical thinking capability. Although the narrow conception of creativity as divergent thinking is not subsumed under that of critical thinking, the role of divergent thinking is not so crucial in the science context of creative problem-solving. On the contrary, the broad conception of creativity as focusing on the reference to utility and the third conception of creativity as a process based on the variation and combination of existing pieces of information are crucial in creative problem-solving context, which are yet subsumed under that of critical thinking. The emphasis on critical thinking education is connected with the characteristics of contemporary knowledge-based society. This rapidly changing society requires situation-adaptive or situation-sensitive cognitive ability, whose core is critical thinking capability. Hence, the education of critical thinking is to be centered on the learning of blowing-how and procedural knowledge but not of knowing-that and declarative knowledge. Accordingly, the learning of critical thinking is to be headed towards the cultivation of competence but not just of performance. In conclusion, when a rational problem-solving through critical and logical thinking turns out consequently to be novel, we call it creative thinking. So, creativity is an emergent property based on critical and logical thinking.

  • PDF