• Title/Summary/Keyword: 최상층 수평변위

Search Result 9, Processing Time 0.02 seconds

Application of the Artificial Neural Network Technique for Estimation of Structure Responses due to Wind Load (풍하중으로부터 구조반응 추정을 위한 인공신경망 기법의 적용)

  • Moon, Jin-Cheol;Park, Hyo-Seon
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.33.2-33.2
    • /
    • 2010
  • 고층건물의 최상층 수평변위는 해당 건물의 안전성 및 사용성 평가에 중요한 지표가 된다 이러한 건물의 수평변위는 주로 풍하중에 기인한다 본 논문에서는 이러한 구조반응을 풍하중에 기인한 풍속데이터로부터 직접 추정하기 위해서 인공신경망(Artificial Neural Network, ANN)을 도입하였다 이에 대한 적용성을 판단하기 위해서 고층건물을 형상화한 모형테스트를 실시하고 풍향, 풍속, 변위 값을 얻었다. 이후 인공신경망에 적용시켜 실제 실험 데이터와의 비교를 통해 타당성을 검토하였다.

  • PDF

An Analytical Study on Semi-Rigid Connections of 20-Story Braced Steel Structures (20층 가새 철골구조물의 반강접 접합부에 관한 해석적 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.1-8
    • /
    • 2000
  • In this study, the effect of semi-rigid connections on the structural behavior of 20-story braced steel structure has been investigated utilizing the second-order elastic structural analysis program in which nonlinear behavior of beam-column connections and geometric nonlinearity have been considered. Global effects such as P-delta effect and sway at the top have been studied, as well as distribution of member force and combined stress in structural members as local effects. When the structure subjected to horizontal load and vertical load is equipped with lateral-load resisting system such as braces, replacement of shear connection with semi-rigid connection has not caused any problem in P-delta effect and top lateral displacement. Distribution of member forces resulted in reduction in member size for economic structural design.

  • PDF

Lateral Behavior in Outrigger System of Tall Building Considering Floor Diaphragm (바닥 격막을 고려한 초고층 아웃리거 구조시스템의 수평거동)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.45-52
    • /
    • 2018
  • The paper aimed to find out the lateral behavior of outrigger system in high-rise building considering floor diaphragm. To achieve this goal, a structural schematic design of 80 stories building was conducted by utilizing MIDAS-Gen. In this research, the key parameters of the structure analysis were the outrigger location in plan, the slab stiffness, the outrigger stiffness and the kind of diaphragm. For the purpose of this study, we analyzed and studied the lateral displacement in top floor, the story drift and the stress in slab. The research results indicated that the outrigger location in plan, the slab stiffness, the outrigger stiffness and the kind of diaphragm had an effect on lateral behavior in outrigger system of tall building. And the results of this analysis research can provided the assistance in getting the basic data of structure design for looking for the lateral behavior of outrigger system in the high-rise building.

Effect of Cap Truss on Optimal Outrigger Location in Tall Building (초고층건물에서 아웃리거 구조의 최적위치에 대한 캡 트러스가 미치는 영향)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.40-49
    • /
    • 2013
  • This study purposed to investigate the optimal outrigger location in tall building with cap truss after a structural schematic design of 80 stories building was performed by using MIDAS-Gen. In this paper, the main parameters of structural analysis were the outrigger location and stiffness of main structural elements (outrigger, exterior column, shear wall etc). In order to search the optimal outrigger position in high-rise building with cap truss, we analysed and examined the lateral displacement of top floor which is one of the very important considering factors of tall building structural design. The paper results indicated that the outrigger location and the stiffness of main structural elements such as outrigger, exterior column and shear wall had an effect on the optimal outrigger location. And it is verified that the study results provided the basic engineering data for fixing the most optimal outrigger location for minimizing the lateral displacement of tall building.

Ductility Demand of Precast Coupled Shear Wall (프리캐스트 병렬 전단벽의 연성도 해석)

  • 홍성걸;김영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.29-40
    • /
    • 1999
  • This study presents a simplifled calculation method for required ductility of coupling beams in precast coupled shear walls at preliminary seismic design stages. Deflection of precast coupled shear walls based on a continuum approach is combined with inelastic gap opening of horizontal connection of panels to provide a relationship between the system-level ductility and the element-level ductility in a precast coupled shear wall. The equation proposed herein for ductility requirement for coupling beams shows that higher stiffness and lower strength of coupling beams result in high ductility reuqirement. The equation also shows that the ductility requirement is proportional to the degree of gap opening of the story in question. However, the coupling beam ductility in higher stories are not affected by gap openings of horizontal connections of panel.

  • PDF

Comparative Analysis on Influence of Structure Elements on Optimal Location of One-Outrigger System (단일 아웃리거 구조시스템의 최적위치에 미치는 구조요소의 영향에 대한 비교분석)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.22-32
    • /
    • 2015
  • This study intended to analyze an influence of the structure elements on the optimal location for one-outrigger system in tall building by using MIDAS-Gen. In this investigation, the analysis parameters were the outrigger position and the stiffness of main structure elements such as shear walls, outrigger systems, exterior columns connected in outrigger system and frames not to be connected in outrigger system. For the objective of finding out the optimal location for one-outrigger system in high-rise building, we studied the lateral displacement in top level of 80 stories building. The results of this study indicated that the outrigger location and the stiffness of main structure elements such as shear walls, outrigger systems, exterior columns connected in outrigger system and frames not to be connected in outrigger system had an influence on the optimal location of one-outrigger system. In addition, it is showed that the research results can be very useful in obtaining the structure design data for looking for the optimal location of one-outrigger system in high-rise building.

Proposal for Optimal Position of Offset Outrigger System (오프셋 아웃리거 구조시스템의 최적 위치에 대한 제안)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.84-91
    • /
    • 2019
  • For the goal of the proposal for optimum position of offset outrigger system, a structural schematic design of 70 stories building was carried out, using the general structure analysis program of MIDAS-Gen. In this research, the primary factors of this analysis research were the shear wall stiffness, the frame stiffness, the outrigger stiffness, the stiffness of column linked in outrigger system, etc. To achieve the aim of this study, we analyzed and studied the lateral displacement in top level, the force distribution of outrigger, the existing model of optimal outrigger location, and so on. This paper proposed the optimal position of offset outrigger system. Furthermore it is considered that the study results can be useful in getting the structure engineering data for seeking the optimal position of offset outrigger in the tall building.

The Behavior and Capacity of Lateral Loaded Rigid Pile Characteristics in Multi-layered Soil Conditions (다층지반에 관입된 강성말뚝의 수평 거동 및 수평 지지력 특성)

  • Kyung, Doo-Hyun;Kang, Beong-Joon;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.77-90
    • /
    • 2009
  • In this study, experimental analysis was performed about lateral load capacity and behavior of laterally loaded-bored rigid piles in muti-layered soil conditions. Lateral pile load tests were performed for muti-layerd soils consisting of different relative density. Ultimated lateral load capacities were measured from lateral load-displacement curves and compared with estimated values using theoretical methods. Bending moments and unit lateral capacity distribution of surrounding piles were measured from attached strain gauges and earth pressure sensors on the pile. It was found that ultimated lateral load capacities were different from the muti-layered soil conditions, and measured values were lower than estimated values. The bending moment distributions of the pile were similar all the time. Unit lateral capacity distributions were a little different from muti-layered soil conditions, but basically similar to the distribution proposed by Prasad and Chari (1999).

Investigation of Optimal Outrigger Location of High-rise Offset Outrigger System (초고층 오프셋 아웃리거 구조시스템의 최적 아웃리거 위치에 대한 탐색)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.16-24
    • /
    • 2017
  • The purpose of this paper is to search the optimal location of offset outrigger system in high-rise building after a structural schematic design of 80 stories building was conducted, making use of MIDAS-Gen. In this research, the key factors of analysis study were column stiffness, outrigger position in plan and outrigger location in height. For the aim of finding out the optimum position of offset outrigger system in tall building, we studied the lateral displacement in top floor which is the very essential variables in the structural design of high-rise building. The results of study showed that the column stiffness, the outrigger location in plan and outrigger location in height had an effect on the optimal position of outrigger system. Also, it is indicated that the research results can be useful in acquiring the structural design materials for seeking the optimum position of offset outrigger system in tall building.