• Title/Summary/Keyword: 최대 인장응력

Search Result 295, Processing Time 0.027 seconds

Prediction of Tensile Strength of Wet Sand (II) : Validation (습윤 모래에서 인장강도의 예측 (II) : 검증)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.37-44
    • /
    • 2008
  • At low normal stress levels, tensile strength of sand characteristically varies with either saturation or suction of soil in an up-and-down manner with a peak tensile strength that can occur at any degree of saturation. A theory that accurately predicts tensile strength of wet sand was presented in the previous study. In this study, the results of uniaxial tensile, suction-saturation and direct shear tests obtained from three sands (Esperance sand from Seattle, Washington, clean sand from Perth, Australia, and Ottawa sand) are used to validate the proposed theory. The closed form expression of the proposed theory can predict well the experimental data obtained from these sands in terms of the variation patterns of tensile strength over the entire saturation regimes, the magnitude of the tensile strength, its peak value, and the corresponding degree of saturation when the peak strength occurs.

Estimation Model of Shear Transfer Strength for Uncracked Pull-Off Test Specimens based on Compression Field Theory (비균열 인장재하 시험체의 압축장 이론에 기반한 전단전달강도 산정모델)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.101-111
    • /
    • 2021
  • Two different types of shear-friction tests were classified by external loadings and referred to as a push-off and a pull-off test. In a pull-off test, a tension force is applied in the transverse direction of the test specimen to produce a shear stress at the shear plane. This paper presents a method to evaluate shear transfer strengths of uncracked pull-off specimens. The method is based on the compression field theory and different constitutive laws are applied in some ways to gain accurate shear strengths considering softening effects of concrete struts based on Modified Compression Field Theory (MCFT) and Softened Truss Model (STM). The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with the predicted values. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked pull-off test specimens. A shear strength evaluation formula considering the effective compressive strength of a concrete strut was proposed, and the applicability of the proposed formula was verified by comparing with the experimental results in the literature.

Design Methodology of Gap Slab for Post-Tensioned Prestressed Concrete Pavement (포스트텐션 콘크리트 포장의 Gap Slab 설계 방안)

  • Park, Hee-Beom;Kim, Seong-Min;Shim, Jae-Soo
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.137-146
    • /
    • 2010
  • This study was conducted to develop the design methodology of gap slabs for the post-tensioned concrete pavement (PTCP). The gap slabs were considered as unbonded, half bonded, and bonded types. According to the types of the gap slabs, the curling stresses were investigated first under the environmental loads. The stresses due to the vehicle loads were analyzed considering both the single and tandem axles. The method to calculate the prestressing amount was suggested by comparing the combined stresses due to both loads and the allowable tensile stress of concrete. The prestressing amount for the unbonded type gap slab could be designed by considering only the gap slab; however, for the half bonded and bonded gap slabs, the whole PTCP slab should be analyzed to properly design the prestressing amount.

Tensile Strength of Polymer-Modified Asphalt Concrete at Low-Temperature (폴리머 개질아스팔트 콘크리트의 저온 인장강도 특성)

  • Doh, Young-Soo;Kwon, Seung-Zoon;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.35-42
    • /
    • 2002
  • Many temperature-related problems are created in asphalt pavement due to the low temperature. In particular, loss of tensile strength due to low temperature is known to be responsible for thermal failure of pavements in cold regions under $-20^{\circ}C$. The objective of this study is to evaluate characteristics of resistance against low-temperature cracking of polymer asphalt concrete mixtures modified with LDPE and SBS. The test results showed that the mixtures had the maximum indirect tensile strength(ITS) at low temperature ranging from $-10^{\circ}C. It was proved through ITS test that the stress due to differential thermal contraction over the tensile strength did generate internal damage at the temperature below $-20^{\circ}C$. It was shown that the asphalt mixtures modified with polymer had better ITS than the normal asphalt mixture at the temperature below $-20^{\circ}C$. Thus the effect of modification was revealed as tensile strength improvement. From the results of this study, it was recommended that polymer-modified asphalt should be used in order to prevent low-temperature cracking in cold region.

  • PDF

접촉요소(Contact Element)를 적용한 나사체결부(Thread joint)의 구조해석

  • 구송회;이방업;조원만;이환규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.15-24
    • /
    • 1996
  • 로켓모타의 연소관은 구조적인 편의성 및 경량화를 위하여 도옴-실린더부와 실린더-노즐부에 나사체결방법을 많이 적용하고 있는데, 나사의 골부위에 집중응력이 발생하여 인장강도를 넘는 응력이 발생하는 경우가 있다. 본 연구에서는 나사의 골부위의 응력수준을 좀 더 정확히 예측하기 위하여 나사체결시 작용하는 조립 토오크에 의한 초기하중을 고려한 구조해석을 수행하였으며, 나사부위에 발생하는 응력이 항복강도를 초과하므로 정확한 해석을 위하여 탄소성해석을 수행하였다. 조립 토오크에 의한 초기하중은 나사체결 멈춤부에 음(-)의 접촉 간극을 부여하여 모델링하였으며, 조립 토오크의 크기는 나사체결 근접부에서 변형률을 측정하여 모사하였다. 해석결과 초기하중을 고려하여 구조해석을 수행하면 최대예상 작동압력에서 초기하중의 영향은 거의 나타나지 않았으며, 마찰계수를 감소시키면 최대응력이 감소하여 구조적 안전성이 증가할 것으로 판단된다.

  • PDF

Comparison of Tensile Strengths in Granite Using Brazilian Tests and Hollow Cylinder Tests for Hydraulic Fracturing Test Interpretation (수압파쇄시험 해석을 위한 중공원통 인장시험과 압열인장시험 화강암 인장강도 비교)

  • Jo, Yeonguk;Chang, Chandong;Lee, Tae Jong;Kim, Kwang-Yeom
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.362-371
    • /
    • 2013
  • We conducted hollow cylinder tensile strength tests and Brazilian tests in Seokmo granite to measure tensile strength necessary for estimating the magnitude of the maximum horizontal principal stress in hydraulic fracturing stress measurements. Two different pressurization rates were used in hollow cylinder tests. Tensile strengths were determined to be higher at higher pressurization rate, which suggests that tensile strength should be measurement at the same rate used in actual in situ hydraulic fracturing tests. Considering the effect of pressurization rate and specimen size on tensile strength, the hollow cylinder tests and Brazilian tests yield similar results each other. This demonstrates that Brazilian tests can be utilized to produce representative tensile strengths for interpretation of hydraulic fracturing test results.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (II) Evaluation of Restrained Shrinkage Characteristics and Prediction of Degree of Restraint (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (II) 구속 수축 특성 평가 및 구속도 예측)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.317-325
    • /
    • 2012
  • In this study, to evaluate the shrinkage behavior of ultra high performance fiber reinforced concrete (UHPFRC) under restrained condition, restrained shrinkage test was performed according to ring-test mostly used at home and abroad. Ring-test was performed with the various thicknesses and radii of inner steel ring to give different degree of restraint. Free shrinkage and tensile tests were carried out simultaneously to estimate the degree of restraint, stress relaxation, and shrinkage cracking potential. Test results indicated that the average steel strain and residual tensile stress were reduced as the thicker inner steel ring was used, whereas degree of restraint was increased. The steel strain, residual tensile stress and degree of restraint were hardly affected by the size of radius of inner ring. In the case of all ring specimens, shrinkage crack did not occur because the residual tensile stress was lower than the tensile strength. About 39~65% of the elastic shrinkage stress was relaxed by the sustained interface pressure, and the maximum relaxed stress was increased as the thicker inner ring was applied. Finally, the degree of restraint with age was predicted by performing non-linear regression analysis, and it was in good agreement with the test results.

Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.458-466
    • /
    • 2020
  • The purpose of this experimental research is to evaluate the compressive and tensile behaviors of high performance hybrid fiber reinforced concrete(HPHFRC) using amorphous steel fiber(ASF) and polyamide fiber(PAF). For this purpose, the HPHFRCs using ASF and PAF were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively. And then the compressive and tensile behaviors such as the compressive strength, compressive toughness, direct tensile strength, and stress-strain characteristics under compressive and tensile tests were estimated. It was observed from the test results that the compressive strength of HPHFRC was slightly decreased than that of plain concrete, but the compressive toughness, compressive toughness ratio, and direct tensile strength of HPHFRC increased significantly. Also, it was revealed that the plain concrete showed brittle fracture after the maximum stress from the stress-strain curves, but HPHFRC showed strain softening.

A Study on the Structural Behavior and Safety Evaluation based on Field Measurement Value of Launching Truss (런칭 트러스의 안전성 평가 및 실측치에 기초한 구조거동에 관한 연구)

  • Park, Young Hoon;Lee, Seung Yong;Jeon, Jun Chang;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.383-391
    • /
    • 1998
  • Launching truss used for constructing the precast segmental concrete bridge has upper chord, lower chord and diagonal members. And the pin is used for connecting these members. From the field loading test carried out for investigating the actual behavior of launching truss, the great difference is analyzed between measured stress and calculated stress. Based on measured value, the structural analysis are carried out about assumed abnormal behavior of connection part. From the results of analysis, it is analyzed that the abnormal behavior of connection part greatly affect the structural behavior of launching truss. In addition, from the investigation of safety of launching truss, it is evaluated that the launching truss has enough safety with normal behavior of connection part.

  • PDF

Effects of Laser Source Geometry on Laser Shock Peening Residual Stress (레이저 광원 형상이 레이저 충격 피닝 잔류응력에 미치는 영향)

  • Kim, Ju-Hee;Kim, Yun-Jae;Kim, Joung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.609-615
    • /
    • 2012
  • In LSP (laser shock peening) treatment, the laser source geometries when the laser beam strikes the metal target area are diverse. The laser spot geometry affects the residual stress field beneath the treated surface of the metallic materials, which determines the characteristics of the pressure pulse. In this paper, detailed finite-element (FE) simulations on laser shock peening have been conducted in order to predict the magnitude and of the residual stresses and the depth affected in Inconel alloy 600 steel. The residual stress results are compared for circular, rectangular, and elliptical laser spot geometries. It is found that a circular spot can produce the maximum compressive residual stresses near the surface but generates tensile residual stresses at the center of the laser spot. In the depth direction, an elliptical laser spot produces the maximum compressive residual stresses. Circular and elliptical spots plastically affect the alloy to higher depths than a rectangular spot.