• Title/Summary/Keyword: 최대 수평응력 방향

Search Result 57, Processing Time 0.043 seconds

Study on the Current Horizontal Stress Characteristics of the Tertiary Rock Formations in the Pohang Basin by Integrated Analysis with In-situ Rock Stress Measurement and Borehole Scanning Data Set (현장 초기응력 측정과 시추공 이미지 스캐닝 자료의 통합 분석을 통한 포항분지 제 3기 지층 내 수평응력 분포 특성 연구)

  • Bae, SeongHo;Jeon, Seokwon;Kim, Jangsoon;Park, Kwongyu
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.304-315
    • /
    • 2016
  • In this study, the current horizontal stress characteristics of the Tertiary rock formations in the Pohang Basin are investigated on the basis of the in-situ rock stress measurements at depths from 75 m to 716 m of the 3 test boreholes in the Doumsan area, Pohang. The deep hydraulic fracturing stress measurement results indicated that the horizontal stress components in the test site appear far lower than the average ones by the linear fit for the data set measured from the other domestic sites. But, borehole scanning revealed clearly that lots of small and large scale borehole failures occurred due to the low strength characteristics of the existing rocks. To obtain more accurate and overall information on the horizontal stress direction, the integrated analysis combining the hydraulic fracturing stress measurement and borehole scanning data set were additionally carried out. The analysis results showed that in the upper sedimentary and the lower volcanic rock formation, the dominant orientations of the current maximum horizontal stress components were appeared in the range of $80^{\circ}{\sim}100^{\circ}$ (N80E~N80W) and $120^{\circ}{\sim}140^{\circ}$ (N60W~N40W), respectively. From this study result it was found that the maximum horizontal stress directions have a tendency to rotate in a clockwise direction as the rock formation changes with depth in the test site.

Late Cretaceous to Early Tertiary Paleostress from Healed Microcracks of Cretaceous Granites in Goheung Area, Jeonnam (전남 고흥 일대 백악기 화강암류의 아문미세균열을 이용한 백악기 말-신생대 3기 초 고응력장)

  • Kang, Seong-Seung;Lim, Chel-Gi;Sim, Hye-Min;Yoon, Jae-Hong;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.255-262
    • /
    • 2008
  • Late Cretaceous to early Tertiary paleostress was evaluated by analyzing the healed microcracks in the Cretaceous granite of the Goheung area, south Korea. Healed microcracks in five granite samples (GH-1, GH-3, GH-4, GH-5, GH-8) were investigated and measured according to direction. The directions of maximum horizontal principal stress in GH-1, GH-3, and GH-4 are dominantly $N60^{\circ}W\;and\;N70^{\circ}E,\;N20^{\circ}W\;and\;N50^{\circ}W$, while minor directions are N-S and $N30^{\circ}E$. In GH-5 and GH-8, $N40^{\circ}E\;and\;N10^{\circ}E$ are the most dominant directions, while $N40^{\circ}W$ is the minor direction. Thus overall, the most dominant directions of healed microcracks in the study area are oriented $N60^{\circ}W$, while minor directions are oriented $N20^{\circ}W,\;N20^{\circ}E\;and\;N70^{\circ}E$, essentially NE. Combining the paleostress results of this study with other studies, the direction of the maximum horizontal principal stress in the study area during the late Cretaceous to the early Tertiary should perhaps be changed WNW to NE. The reason for this is thought to be the complex tectonic movements which occurred in northeast Asia at that time.

Current State of Stress in South-East Korea (한반도 남동부의 현생 응력장)

  • Lee, Jun-Bok;Chang, Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.299-307
    • /
    • 2007
  • We collected data of hydraulic fracturing tests and overcoring tests conducted in 84 boreholes in the south-east Korea in order to analyze the contemporary state of stress in this region. The average direction of the maximum horizontal stress was determined to be $N66^{\circ}{\pm}31^{\circ}E$. The relative magnitudes of the three principal stresses was ${\sigma}_v$ (vertical stress) < ${\sigma}_h$ (minimum horizontal stress) < ${\sigma}_H$ (maximum horizontal stress), indicating thrust fault stress regime. The stress ratio K (horizontal stress/vertical stress) was relatively high (2.2

Horizontal Cracks in Continuously Reinforced Concrete Pavement Structures (연속철근콘크리트 도로포장 구조물의 내부 수평균열)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Kwon, Soon-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.425-429
    • /
    • 2006
  • Horizontal cracks at the mid-depth of concrete slabs were observed at a section of the continuously reinforced concrete pavement(CRCP) structures on the Korea Highway Corporation's Test Road. To investigate the existence and the extent of horizontal cracks in the concrete slab, a number of cores were taken from the section of CRCP. To identify the causes of horizontal cracks, numerical analyses were conducted. Several variables relative to design, material, and environment were considered in the studies to evaluate possible causes of horizontal cracking. A numerical model of CRCP was developed using the finite element discretization, and the shear and normal tensile stress distributions in CRCP were investigated with the model. Numerical analysis results show that the maximum shear and normal tensile stresses develop near the depth of steel bars at transverse cracks. If those maximum stresses reach the strength of concrete, horizontal cracks occur. The maximum stresses become higher as the environmental loads, coefficient of thermal expansion of concrete, and elastic modulus of concrete increase.

A Constitutive Model for Rotation of Principal Stress Axes during Direct Simple Shear Deformation (직접단순전단변형에 따른 주응력 방향의 회전을 고려한 구성모델)

  • Park, Sung-Sik;Lee, Jong-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.53-62
    • /
    • 2008
  • A constitutive model, which can simulate the effect of principal stress rotation associated with direct simple shear test, is proposed in this study. The model is based on two mobilized planes. The plastic strains occur from the two mobilized planes, and depend on stress state, and they are added. The first plane is a plane of maximum shear stress, which rotates about the horizontal axis, and the second plane is a horizontal plane which is spatially fixed. The second plane is used to consider the effect of principal stress rotation on simple shear tests under different stress states. The soil skeleton behavior observed in drained simple shear tests is captured in the model. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC. The model is first calibrated with drained simple shear tests on loose Fraser River sand. The measured shear stress and volume change are partially induced by principal stress rotation and compared with model calculations. The model is verified by comparing predicted and measured settlements due to rigid footing resting on loose sands. Settlements predicted by the proposed model were very similar to measured settlements. Mohr-Coulomb model can not consider the effect of principal stress rotation and its prediction was only 20% of measured settlements.

Evolution of the Yangsan Fault Using the Structural Elements (구조요소를 이용한 양산단층의 진화 해석)

  • 장천중;장태우
    • Proceedings of the KSEG Conference
    • /
    • 2002.04a
    • /
    • pp.173-182
    • /
    • 2002
  • 단층이동자료를 이용하여 지구조 사건을 분별하고 단층의 운동시기 및 한반도 주변지구조체계와 비교하여 양산단층의 진화과정을 해석하였다. 양산단층은 팔레오세 때 단층형성이 시작되었고 그 후 NW-SE 신장 사건에 의해 우수주향이동을 했다. 우수주향이동은 장구한 시간동안 진행되어 마이오세 초에 확장축이 바뀜에 따라 약간의 변화가 있지만 우수운동은 지속되었다. 마이오세 말에 양산단층은 좌수이동으로 변하여 운동하게 되며, 마이오세 말 혹은 플라이스토세 초에 와서 양산단층은 N-S 방향의 최대 수평압축응력을 받게 된다. 이후 플라이스토세를 전후해서 E-W 방향의 최대수평압축응력에 의해 양산단층은 다시 우수이동을 한다. 이와 같이 양산단층은 한번의 운동으로 발달된 단층이 아니라 서로 다른 응력체계 하에서 다중변형을 받아 현재의 모습으로 진화되었다고 판단된다.

  • PDF

Paleostress from Healed Microcracks and Fluid Inclusions in Quartz of the Jurassic Granites in the Southwestern Ogcheon Folded Belt (옥천습곡대 서남부지역에 분포하는 쥬라기 화강암류의 석영내 아문 미세균열 및 유체포유물을 이용한 고응력장)

  • Kang, Seong-Seung;Yoo, Bong-Chul;Jang, Bo-An;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.19-32
    • /
    • 2009
  • Paleostress was interpreted by analyzing the healed microcracks and the secondary fluid inclusions in quartz of the Jurassic granites distributed in the southwestern Ogcheon Folded Belt, South Korea. The most dominant direction of healed microcracks in the study area was oriented $N30^{\circ}W$, and $N70^{\circ}W$ direction was also recognized. The formation temperatures of fluid inclusions were ranged $380-550^{\circ}C$ and the age of healed microcrack formations might have been approximately 166-200 Ma. Comparing the paleostress orientation obtained from the direction of healed microcracks to the formation age of healed microcracks estimated from the secondary fluid inclusions, it is considered that granitic rock body in study area was subject to a maximum horizontal principal stress along the NNW-SSE and WNW-ESE directions in the early Jurassic to middle Jurassic.

The Effect of Stress on Borehole Deformability (응력이 공내 변형률에 미치는 영향)

  • 윤건신
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.219-234
    • /
    • 1998
  • Modulus measurements in vertical boreholes under simulated horizontal in-situ stress conditions were performed on laboratory rock specimens. The experimental program was focused on the examination of modulus change with the variation of the orientation, magnitude and ratios of horizontal biaxial stresses. The experiment results show that the modulus increases when the magnitude of the horizontal stresses increases. The modulus measured in the minimum principal direction increased when the ratio between the horizontal principal stresses increased, while the modulus measured in the maximum principal direction decreased when the ratio of the horizontal principal stresses increased. These were caused by the tangential stresses that vary depending upon the magnitude of horizontal stresses, the applied pressure and the orientation of measurement. Also, the measured moduli were determined under tensile stress, compressive stress, or both stresses. Thus, the stress effect on deformation modulus should be considered, not only for the interpretation of the results of borehole deformability measurement, but also for the design of underground gas storage and pressure tunnel, and for the interpretation of tunnel monitoring.

  • PDF

Lateral Behavior of Abutment Piles in Full Integral Bridge During 7 Days in Response to Hydration Heat and Drying Shrinkage (수화열과 건조수축에 의한 7일간의 완전 일체식 교량 교대 말뚝기초의 횡방향 거동)

  • ;;;;Thomas A. Bolte
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.127-149
    • /
    • 2003
  • The bridge tested was 3 spans 90m-long PSC beam concrete bridge with a stub-type abutment which had a skew of 60$^{\circ}$ about the axis of bridge. A cement concrete was placed at the superstructural slab of the bridge. Inclinometers and straingauges were installed at piles as well. During 7 days-curing of superstructural slab, the pile behavior in response to hydration heat and drying shrinkage of the slab was monitored. Then monitored values were compared with the horizontal movement obtained from the HACOM program and the calculated lateral behavior obtained from the nonlinear p-y curves of pile. As a result, lateral behavior of H-piles by the field measurement occurred due to the influence of hydration heat and drying shrinkage obtained during curing of superstructural concrete. The lateral displacements by hydration heat and drying shrinkage were 2.2mmand 1.4mm respectively. It was observed as well that the inflection point of lateral displacement of pile was shown at 1.3m down from footing base. It means that the horizontal movement of stub abutment did not behave as the fixed head condition of a pile but behave as a similar condition. The measured bending stress did not show the same behavior as the fixed head condition of pile but showed a similar condition. The increment of maximum bending stress obtained from the nonlinear p-y curves of pile was about 300(kgf/$\textrm{km}^2$) and was 2 times larger than measured values regardless of installation places of straingauges. Meanwhile, lateral load, maximum lateral displacement, maximum bending stress and maximum bending moment of pile showed a linear behavior as curing of superstructural concrete slab.

Fault reactivation potential during $CO_2$ injection in the Gippsland Basin, Australia (호주 Gippsland Basin에서 $CO_2$ 주입 중 단층 재활성화의 가능성)

  • Ruth, Peter J. van;Nelson, Emma J.;Hillis, Richard R.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.50-59
    • /
    • 2006
  • The risk of fault reactivation in the Gippsland Basin was calculated using the FAST (Fault Analysis Seal Technology) technique, which determines fault reactivation risk by estimating the increase in pore pressure required to cause reactivation within the present-day stress field. The stress regime in the Gippsland Basin is on the boundary between strike-slip and reverse faulting: maximum horizontal stress $({\sim}\;40.5\;Mpa/km)$ > vertical stress (21 Mpa/km) ${\sim}$ minimum horizontal stress (20 MPa/km). Pore pressure is hydrostatic above the Campanian Volcanics of the Golden Beach Subgroup. The NW-SE maximum horizontal stress orientation $(139^{\circ}N)$ determined herein is broadly consistent with previous estimates, and verifies a NW-SE maximum horizontal stress orientation in the Gippsland Basin. Fault reactivation risk in the Gippsland Basin was calculated using two fault strength scenarios; cohesionless faults $(C=0;{\mu}=0.65)$ and healed faults $(C=5.4;\;{\mu}=0.78)$. The orientations of faults with relatively high and relatively low reactivation potential are almost identical for healed and cohesionless fault strength scenarios. High-angle faults striking NE-SW are unlikely to reactivate in the current stress regime. High-angle faults oriented SSE-NNW and ENE-WSW have the highest fault reactivation risk. Additionally, low-angle faults (thrust faults) striking NE-SW have a relatively high risk of reactivation. The highest reactivation risk for optimally oriented faults corresponds to an estimated pore pressure increase (Delta-P) of 3.8 MPa $({\sim}548\;psi)$ for cohesionless faults and 15.6 MPa $({\sim}2262\;psi)$ for healed faults. The absolute values of pore pressure increase obtained from fault reactivation analysis presented in this paper are subject to large errors because of uncertainties in the geomechanical model (in situ stress and rock strength data). In particular, the maximum horizontal stress magnitude and fault strength data are poorly constrained. Therefore, fault reactivation analysis cannot be used to directly measure the maximum allowable pore pressure increase within a reservoir. We argue that fault reactivation analysis of this type can only be used for assessing the relative risk of fault reactivation and not to determine the maximum allowable pore pressure increase a fault can withstand prior to reactivation.