DOI QR코드

DOI QR Code

Paleostress from Healed Microcracks and Fluid Inclusions in Quartz of the Jurassic Granites in the Southwestern Ogcheon Folded Belt

옥천습곡대 서남부지역에 분포하는 쥬라기 화강암류의 석영내 아문 미세균열 및 유체포유물을 이용한 고응력장

  • Kang, Seong-Seung (Resources Engineering, Chosun University) ;
  • Yoo, Bong-Chul (Department of geology and environmental sciences, Chungnam National University) ;
  • Jang, Bo-An (Department of geophysics, Kangwon National University) ;
  • Kim, Cheong-Bin (Division of Science and Environmental Education, Sunchon National University)
  • 강성승 (조선대학교 자원공학과) ;
  • 유봉철 (충남대학교 지구환경과학과) ;
  • 장보안 (강원대학교 지구물리학과) ;
  • 김정빈 (순천대학교 과학.환경교육학부)
  • Published : 2009.02.28

Abstract

Paleostress was interpreted by analyzing the healed microcracks and the secondary fluid inclusions in quartz of the Jurassic granites distributed in the southwestern Ogcheon Folded Belt, South Korea. The most dominant direction of healed microcracks in the study area was oriented $N30^{\circ}W$, and $N70^{\circ}W$ direction was also recognized. The formation temperatures of fluid inclusions were ranged $380-550^{\circ}C$ and the age of healed microcrack formations might have been approximately 166-200 Ma. Comparing the paleostress orientation obtained from the direction of healed microcracks to the formation age of healed microcracks estimated from the secondary fluid inclusions, it is considered that granitic rock body in study area was subject to a maximum horizontal principal stress along the NNW-SSE and WNW-ESE directions in the early Jurassic to middle Jurassic.

옥천습곡대의 서남부지역에서 분포하는 쥬라기 화강암류의 석영내에 존재하는 아문 미세균열과 유체표유물을 분석하여 이 지역에 작용한 고응력장을 해석하였다. 연구지역에서 나타나는 아문 미세균열의 방향성은 전체적으로 $N30^{\circ}W$의 방향이 가장 우세하며 $N70^{\circ}W$의 방향도 나타난다. 연구지역의 아문 미세균열 생성온도는 $380-550^{\circ}C$ 범위를 보이며, 이들 아문 미세균열은 약 166-200Ma의 기간 동안 형성되었을 것으로 추정된다. 아문 미세균열의 방향성을 통한 고응력장의 작용 방향과 유체포유물에 의한 아문 미세균열의 형성시기를 비교하여 볼 때, 연구지역 내에서 발달하는 화강암질암체는 NNW-SSE와 WNW-ESE 방향의 최대수평주응력인 고응력장이 쥬라기 초기에서 쥬라기 중기 기간 동안 작용하였을 것으로 사료된다.

Keywords

References

  1. 강필종, 1979, 남한 인공위성 영상의 지질학적 분석. 지질학회지, 15, 181-191
  2. 김옥준, 1971, 남한의 신기화가압류의 관입시기와 지각변동, 광산지질, 4, 1-10
  3. 김용준, 1986, 영남육괴에 분포하는 고기 화가암질류의 지질연대와 성인에 대한 연구. 광산지질, 19, 151-161
  4. 김용준, 박영석, 강상원, 1994, 호남전단대내에 분포하는 엽리상화강암류의 지질시대와 생성과정에 관한 연구. 자원환경지질, 27, 247-261
  5. 김용준, 박영석, 박천영, 김진, 1995, 나주-영암-목포 지역에 분포하는 화성암류의 암석화학과 화성활동에 관한 연구. 한국지구과학회지, 16, 442-461
  6. 김용준, 오민수, 박재봉, 1993, 나주-해남 지역에 분포하는 화성암류의 암석화학. 한국지구과학회지, 14, 300-515
  7. 김용준, 이창신, 1988, 장수-운봉지역에 분포하는 화성암류 와 화성활동에 관한 연구. 지질학회지, 24, 111-131
  8. 김정빈, 1990, 담양-진안 사이에 분포하는 심성 화성암류에 대한 암석화학과 성인. 전남대학교 이학박사 학위논문, 182 p
  9. 김정빈, 김용준, 1990, 담양-진안 사이에 분포하는 엽리상화강암류에 대한 지질시대와 성인에 관한 연구, 광산지질, 23, 233-244
  10. 김종환, 고상모, 이동진, 박중권, 홍세선, 채수천, 이형재, 안기오, 서효준, 전효택, 문희수, 1993, 화산원 천열수성광상탐사 및 모델정립(3). 과학기술처, KR-92(T)-25, 209 p
  11. 장보안, 1995, 옥천습곡대 동북부 지역의 화강암체내에 분포하는 이문 미세균열에 의한 중생대 고응력장. 한국과학재단, 22-54
  12. 장보안, 김정애, 1996, 월악산, 속리산 일대의 화가암체내에 분포하는 아문 미세균열 및 유체포유물에 의한 중생대 백악기 고웅력장. 지질학회지, 32, 291-301
  13. 정해식, 장보안, 2004, 소백산 육괴 동북부 영주 화가암 내의 아문 미세균열 및 유체포유물을 이용한 중생대 고응력장. 지질학회지, 40, 179-190
  14. 주승환, 1986, 영남육괴 Rb-Sr 연대측정연구(111). 한국동력자원연구소 연구보고서, KB-86-2-17, 28 p
  15. 주승환, 지세정, 1990, 광주 화강암의 Rb-90-IB-2, 52 p
  16. 최범영, 황재하, 고희재, 이병주, 김정찬, 최현일, 기원서, 김유봉, 송교영, 최영섭, 2002, 1:250.000 목포.여수 도폭 지질보고서, 한국지질자원연구원, 45 p
  17. Brantley, S.L., Evans, B., Hickman, S.H., and Crerar, DA, 1990, Healing in microcracks in quartz: Implications for fluid flow. Geology, 18, 136-139 https://doi.org/10.1130/0091-7613(1990)018<0136:HOMIQI>2.3.CO;2
  18. Brown, P.E. and Lamb, W.M., 1989, P-V-T properties of fluids in the implications of fluid inclusion studies. Geochimica et Cosmochimica Acta.,53, 1209-1221 https://doi.org/10.1016/0016-7037(89)90057-4
  19. Chough, SK, Kwon, S.-T, Ree, l-H., and Choi, DK, 2000, Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth-Science Reviews, 52, 175-235 https://doi.org/10.1016/S0012-8252(00)00029-5
  20. Dodson, M.H., 1973, Closure temperature in cooling geochronological and petrological systems. Contribution Mineralogy and Petrology, 40, 259-274 https://doi.org/10.1007/BF00373790
  21. Fredrich, JT and Wong, TF, 1986, Micromechanics of Thermally induced cracking in three crustal rocks. Journal of Geophysical Research, 91, 12743-12764 https://doi.org/10.1029/JB091iB12p12743
  22. Homand-Etienne, E and Houpert, R., 1989, Thermally induced microcracking in granites: Characterization and analysis. International Journal of Rock Mechanics and Mining Science, 26, 125-134 https://doi.org/10.1016/0148-9062(89)90001-6
  23. Ingerson, E., 1947, Liquid inclusions in geologic thermometry. American Mineralogist, 32, 375-388
  24. Jang, BA and Wang, H.F, 1991, Micromechanical modeling of healed microcrack orientations as a paleostress indicator: Application to Precambrian granite from Illinois and Wisconsin. Journal of Geophysical Research, 96, 19655-19664 https://doi.org/10.1029/91JB01938
  25. Jang, BA, Wang, H.F, Ren, X., and Kowallis, B.J., 1989, Precambrian paleostress from microcracks and fluid inclusions in the Wolf River batholith of central Wisconsin. Geological Society of America Bulletin, 101, 1457-1464 https://doi.org/10.1130/0016-7606(1989)101<1457:PPFMAF>2.3.CO;2
  26. Jin, M.S., 1995, Geochronology and cooling history of the Mesozoic granite plutons in the central part of the Ogcheon Fold Belt, South Korea. Journal of Petrological Society of Korea, 4,153-167
  27. Korea Institute of Geoscience and Mineral Resources, 2001, Tectonic map of Korea. Korea Institute of Geo science and Mineral Resources
  28. Kim, J.M., Jang, B.A., Obara, Y., and Kang, S.S., 2008, Paleostress reconstructions based on calcite twins in the Joseon Supergroup, northeastern Ogcheon Belt (South Korea). The Island Arc, 17, 57-69 https://doi.org/10.1111/j.1440-1738.2007.00598.x
  29. Knapp, R.B. and Knight, J., 1977, Differential thennal expansion of pore fluids: Fracture propagation and microearthquake production in hot pluton environments. Journal of Geophysical Research, 82, 2515-2522 https://doi.org/10.1029/JB082i017p02515
  30. Koh, H.J., 1995, Structural analysis and tectonic evolution of the Ogcheon supergroup, Goesan, central part of the Ogcheon belt, Korea. Ph.D. thesis, Seoul National University, 282 p
  31. Kowallis, B.1., Wang, H.P., and Jang, B.A., 1987, Healed microcrack orientations in granite from Illinois borehole UPH-3 and their relationship to the rock's stress history. Tectonophysics, 135, 297-306 https://doi.org/10.1016/0040-1951(87)90114-4
  32. Kranz, R.L., 1983, Microcracks in rocks: A review. Tectonophysics, 100, 449-480 https://doi.org/10.1016/0040-1951(83)90198-1
  33. Laubach, S.E., 1989, Paleostress directions from the preferred orientation of fluid-inclusion planes (healed microfractures) in sandstone, East Texas basin, U.S.A. Journal of Structural Geology, 11, 603-611 https://doi.org/10.1016/0191-8141(89)90091-6
  34. Lespinasse, M. and Pecher, A., 1986, Microfracturing and regional stress field: A study of the preferred orientations of fluid-inclusion planes in a granite from the Massif Central, France. Journal of Structural Geology, 8, 169-180 https://doi.org/10.1016/0191-8141(86)90107-0
  35. Mawer, C.K. and Williams, P.P., 1985, Crystalline rocks as possible paleoseismicity indicators. Geology, 13, 100- 102 https://doi.org/10.1130/0091-7613(1985)13<100:CRAPPI>2.0.CO;2
  36. Norton, D.L., 1982, Fluid and heat transport phenomena typical of copper-bearing pluton environments. In Titley, S.R., ed., Advances in geology of the Porphyry Copper Deposit: Tucson, University of Arizona Press, 59-72
  37. Nur, A. and Simmons, G, 1970, The origin of small cracks in igneous rocks. International Journal of Rock Mechanics and Mining Science, 7, 307-314 https://doi.org/10.1016/0148-9062(70)90044-6
  38. Pecher, A., Lespinasse, M., and Leroy, J., 1985, Relations between fluid inclusion trails and regional stress field: A tool for fluid chronology-an example of an intragranitic uranium ore deposit (northwest Massif Central, France). Lithos, 18,229-237 https://doi.org/10.1016/0024-4937(85)90027-1
  39. Plumb, R., Engelder, T., and Yale, D., 1984, Near-surface in situ stress: 3. Correlation with microcrack fabric within the New Hampshire granite. Journal of Geophysical research, 89, 9350-9364 https://doi.org/10.1029/JB089iB11p09350
  40. Potter II, R.W., 1977, Pressure corrections for fluid-inclusion homogenization temperature based on the volurnetric properties of the system $N_{a}CI-H_{2}O$. Journal of Research of the U.S. Geological Survey, 5, 603-607
  41. Ren, X., Kowallis, B.J., and Best, M.G, 1989, Paleostress history of the Basin and Range province in western Utab and eastern Nevada from healed microfracture orientations in granites. Geology, 17, 487-490 https://doi.org/10.1130/0091-7613(1989)017<0487:PHOTBA>2.3.CO;2
  42. Roedder, E., 1984, Fluid inclusions: Reviews in mineralogy. Mineralogical Society of America, Washington, D.C., USA, 644 p.
  43. Shelton, K.L. and Orvile, P.M., 1980, Fonnation of synthetic fluid inclusions in natural quartz. American Mineralogist, 65, 1233-1236
  44. Simmons, G and Richter, D., 1976, Microcracks in rocks. In Stems, R.J.G (ed.), The physics and chemistry of minerals and rocks. Wiley-Interscience, NY, USA, 105-137
  45. Smith, D.L. and Evans, B., 1984, Diffusional crack healing in quartz. Journal of Geophysical Research, 89, 4125-4135 https://doi.org/10.1029/JB089iB06p04125
  46. Turek, A. and Kim. C.B., 1995, U-Ph zircon ages of Mesozoic plutons in the Damyang-Geochang area, Ryeongnam massif, Korea. Geochemical Journal, 29, 243-258 https://doi.org/10.2343/geochemj.29.243
  47. Tuttle, O.F., 1949, Structural petrology of planes of liquid inclusions. Journal of Geology, 57, 331-356 https://doi.org/10.1086/625629
  48. Yanai, S., Park, B.S., and Otoh, S., 1985, The Honam Shear Zone (South Korea): Defonnation and tectonic implication in the Far East. Sci. Pap. College of Arts and Science, University of Tokyo, 35, 181-210