• Title/Summary/Keyword: 최대전력 추종제어

Search Result 109, Processing Time 0.024 seconds

A Study on the Installation Angle of the Marine Solar Power Generation System (해상용 태양광 발전 시스템의 설치 각도에 관한 연구)

  • Oh, Jin-Seok;Jang, Jae-Hee
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.167-176
    • /
    • 2018
  • A solar power generation system on single point moored offshore plant has independent power system In order to satisfy the maritime environment and account for the number of sunless days, it is important to supply stable electric power to the systems. For these reasons, solar panels are installed in multiple directions. However, a partial shading effect occurs because the amount of light incident on each panel is different. The generated power by the solar generation system installed on land is affected by the latitude, then it is installed at an angle of 30 to $45^{\circ}$. in the case of Korea. In the case of a solar power generation system installed in a mooring type of marine plant, there is a possibility that the maximum power point is outside of the controllable range due to the partial shading effect. Therefore, a power generation loss occurs. By reducing the light amount difference between both panels, the maximum power point can exist in a range where the MPPT algorithm can track the power. The purpose is so the power generation efficiency can be further increased. In this paper, simulation results show that the highest power generation efficiency is obtained at an installation angle of $20^{\circ}$.

A study on the Maximum Power Point Tracking Control System of Wind Power Generation (풍력발전의 최대전력점 추종제어 방법에 관한 연구)

  • Ko, Seok-Cheol;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking (MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

A study on the Maximum Power Point Tracking Control System of Wind Power Generation (풍력발전의 최대전력점 추종제어 방법에 관한 연구)

  • Ko, Seok-Cheol;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) Is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking(MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

Technology of single-axis solar tracking system and power generation increase (단축식 태양광 추적장치의 설계와 발전량 증대기술)

  • LEE, Jae-Jin;Lee, Kyo-Beum;Jeong, Kyu-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.212-217
    • /
    • 2020
  • The PV power generation system is a comprehensive system that transmits the power generated through a PV panel to a grid connection and is composed of a solar panel, a structure, and an inverter grid connection system. One technology to increase the amount of power generated involves changing the incident angle of sunlight. This study examined the structure and control of a single-axis tracking PV system that increases the amount of power generated by changing the incident angle. The core content is a single-axis control system and technology configured to rotate the solar structure in the east-west direction around the north-south axis. A solar structure that follows the sun from sunrise to sunset in the east-west direction needs to secure structural stability and solar tracking control performance. A single-axis tracking system can generate up to 25% more power.

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

The Maximum Power Point Tracking of Photovoltaic System for Air Conditioning System using Fuzzy Controller. (퍼지제어기를 이용한 에어콘 구동용 태양광 발전시스템의 최대전력점추종 방법)

  • Kang, Byung-Bog;Cha, In-Su;Yu, Kwon-Jong;Jung, Myung-Woong;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.600-602
    • /
    • 1996
  • The purpose of this paper is to develop a new maximum power point tracking(MPPT) using fuzzy set theory for air conditioning system. Fuzzy algorithm based on linguistic rules describing the operator's control strategy is applied to control step-up chopper for MPPT. Fuzzy algorithm is applied to control boost MPPT converter by temperature compensation effect with 8 bit single chip 8051 microcontroller. In this paper, temperature compensation(Becom Transducer : pf-T type) range is $-40^{\circ}C{\sim}+100^{\circ}C$.

  • PDF

Comparison Study of Maximum Power Point Tracking Control with Changing of Radiation (일사량 변화에 대한 최대전력점 추종 제어의 비교 연구)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1075-1082
    • /
    • 2010
  • This paper analyzes a operating characteristic for maximum power point tracking (MPPT) of photovoltaic generation system. MPPT methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. MPPT algorithm is widely used the control method such as the perturbation and observation(PO) method, incremental conductance(IC) method and constant voltage(CV) method. In case of the radiation is changed, this paper proposes a response characteristic with MPPT control algorithms. Also, it proposes the direct for a novel MPPT control algorithm development through the analyzed data, hereby proves the effectiveness of this paper.

A study of Improved P&O MPPT Algorithm go with a Dynamic characteristic of Photovoltaic System (태양광 시스템의 동작특성에 따른 개선된 P&O MPPT 알고리즘 연구)

  • Lee, Seung-Hee;Jang, Ki-Young;Kim, Sang-Mo;Kim, Ki-Hyun;Yu, Gwon-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.107-110
    • /
    • 2009
  • The photovoltaic power system is effected by atmospheric condition. Therefore, The maximum power point tracking(MPPT) algorithm of the Photovoltaic (PV) power system is needed for high efficiency. Many MPPT techniques have been considered in past, but In this paper, the author analyzes widely known P&O MPPT algorithm and ImP&O algorithm, and presents new MPPT algorithm complementing weaknesses of other two algorithms.

  • PDF

A Study on the Tracking Failure of MPPT Control in PV Generation System (태양광 발전시스템의 MPPT제어의 최대전력추종 실패에 관한 연구)

  • Kim, Bong-Tae;Lee, Jae-Deuk;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1290-1292
    • /
    • 2001
  • Photovoltaic(PV) power generation system has been extensively studied and watched with keen interest as a clean and renewable power source. On the other hand, because the output power of solar cell is not only unstable but uncontrollable, the maximum power point tracking(MPPT) control is still hot issue with the tracking failure left unsolved under the sudden fluctuation of irradiance. Hence, in this paper, we introduce the mechanism of the tracking failure under the fluctuation of irradiance, and show the simulation results using SPRW(simulation method for PV power generation system using real weather conditions).

  • PDF

The analysis of MPPT algorithms (최대전력추종제어기법 비교 분석)

  • Lee, Kyung-Soo;Jung, Young-Seck;So, Jung-Hoon;Yu, Gwon-Jong;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.212-214
    • /
    • 2004
  • As the maximum power operating point(MPOP) of photovoltaic(PV) power generation systems changes with changing atmospheric conditions such as solar radiation and temperature, an important consideration in the design of efficient PV system is to track the MPOP correctly. Many maximum power point tracking(MPPT) techniques have been considered in the past, however, techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. This paper analysed and researched the characteristics of three MPPT algorithms; P&O, Inc&Cond, ImP&O and simulated them with irradiance changing.

  • PDF