• Title/Summary/Keyword: 최대우도

Search Result 1,277, Processing Time 0.032 seconds

Application of multiple linear regression and artificial neural network models to forecast long-term precipitation in the Geum River basin (다중회귀모형과 인공신경망모형을 이용한 금강권역 강수량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.723-736
    • /
    • 2022
  • In this study, monthly precipitation forecasting models that can predict up to 12 months in advance were constructed for the Geum River basin, and two statistical techniques, multiple linear regression (MLR) and artificial neural network (ANN), were applied to the model construction. As predictor candidates, a total of 47 climate indices were used, including 39 global climate patterns provided by the National Oceanic and Atmospheric Administration (NOAA) and 8 meteorological factors for the basin. Forecast models were constructed by using climate indices with high correlation by analyzing the teleconnection between the monthly precipitation and each climate index for the past 40 years based on the forecast month. In the goodness-of-fit test results for the average value of forecasts of each month for 1991 to 2021, the MLR models showed -3.3 to -0.1% for the percent bias (PBIAS), 0.45 to 0.50 for the Nash-Sutcliffe efficiency (NSE), and 0.69 to 0.70 for the Pearson correlation coefficient (r), whereas, the ANN models showed PBIAS -5.0~+0.5%, NSE 0.35~0.47, and r 0.64~0.70. The mean values predicted by the MLR models were found to be closer to the observation than the ANN models. The probability of including observations within the forecast range for each month was 57.5 to 83.6% (average 72.9%) for the MLR models, and 71.5 to 88.7% (average 81.1%) for the ANN models, indicating that the ANN models showed better results. The tercile probability by month was 25.9 to 41.9% (average 34.6%) for the MLR models, and 30.3 to 39.1% (average 34.7%) for the ANN models. Both models showed long-term predictability of monthly precipitation with an average of 33.3% or more in tercile probability. In conclusion, the difference in predictability between the two models was found to be relatively small. However, when judging from the hit rate for the prediction range or the tercile probability, the monthly deviation for predictability was found to be relatively small for the ANN models.

Changes in the Linear Compressibility and Bulk Modulus of Natural Stilbite Under Pressure with Varying Pressure-Transmitting Media (천연 스틸바이트의 압력전달매개체에 따른 선형압축률 및 체적탄성률 비교 연구)

  • Hwang, Huijeong;Lee, Hyunseung;Lee, Soojin;Jung, Jaewoo;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.367-376
    • /
    • 2022
  • This study is a preliminary step to understand the reaction between various liquids and zeolite in the subduction zone environment. Stilbite, NaCa4(Al9Si27)O72·28(H2O), was selected and high pressure study was conducted on compressional behavior by the pressure-transmitting medium (PTM). Water and NaHCO3 solution that can exist in the subduction zone was used as PTM, and samples were pressurized from ambient to a maximum of 2.5 GPa. Below 1.0 GPa, both experiments show a low linear compressibility in the range of 0.001 to 0.004 GPa-1 and a high bulk modulus of 220(1) GPa. This is presumably because the structure of the stilbite becomes very dense due to insertion of water molecules or cations into the channel. On the other hand, at 1.0 GPa or higher, the trends of the two experiments are different. In the water run, the linear compressibility of the c-axis is increased to 0.006(1) GPa-1. In the NaHCO3 run, the linear compressibility of the b- and c-axis is increased to 0.006(1) GPa-1. The bulk modulus after 1.0 GPa shows values of 40(1) and 52(7) GPa in water and NaHCO3 run, respectively, confirming that stilbite becomes more compressible than that before 1.0 GPa. It is caused by the migration of cations and water molecules inside the channel, as the water molecules in the PTM start to freeze and stop to insert toward the channel at 1.0 GPa or more. In the NaHCO3 run, it is assumed that the distribution of extra-framework species inside the structure is changed by substitution of the Na+ cation. It can be expected from tendency of the relative intensity ratio of the (001) and (020) peaks which show a different from that of the water run.

Effect of Soil Strength on Seedling Emergence of Rice and Barnyardgrasses in Direct Dry-Seeding (건답직파에서 토양경도가 벼와 피의 출아에 미치는 영향)

  • Kwon, Yong-Woong;Lee, Byun-Woo;Kim, Do-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.489-495
    • /
    • 1996
  • Seedling emergences of four rice varieties (Dongjinbyeo, Dadajo, Galsaekggarak-sharebyeo, and Italiconaverneco) and three barnyardgrass species(Echjnochloa oryzjcola, E. crus-gali var. crus gali E. crus-gali var. praticola) were evaluated in relation to soil strength. Soil strength was varied by compressing the entire volume of soil with a hydraulic jack so as to be 0.5, 1, 2, 3, 6kg /$\textrm{cm}^2$. Soil strength was measured with a penetrometer (Yamanaka type) and soil covering above the seed was 4cm deep. Experiments were conducted at two air temperature conditions of 17 and $25^{\circ}C$. At a soil strength of up to 2kg/$\textrm{cm}^2$, little or no decrease in seedling emergence occurred in all rice varieties and barnyardgrasses tested. Above that value, seedling emergence decreased progressively as the soil strength increased. The degree of decrease was greatest in Dongjinbyeo and smallest in Dadajo among tested rice varieties, and greatest in Echinochloa oryzicola among barnyardgrasses, being greater in barnyardgrasses than rice. Seedling emergence was delayed almost linearly as the soil strength increased. The delay was greatest in Dongjinbyeo among rice varieties and in Echinochloa oryzicola among barnyardgrasses. Mesocotyl length increased as soil strength increased up to 2 to 3kg / $\textrm{cm}^2$ in Dongjinbyeo and Dadajo in 17$^{\circ}C$ and $25^{\circ}C$, and up to 6kg/$\textrm{cm}^2$ in Galsaekggaraksharebyeo and Italiconaverneco in $25^{\circ}C$. Dongjinbyeo showed the least elongation of mesocotyl among rice varieties in any soil strength. The total length of mesotyl, first internode and incomplete leaf showed little variation with soil strength. The total length was longer than the 4cm covering depth in other varieties except Dongjinbyeo. This might have caused the lower emergence rate in Dongjinbyeo than other varieties in higher soil strength.

  • PDF

The Effects of 8-week Ketone Body Supplementation on Endurance Exercise Performance and Autophagy in the Skeletal Muscle of Mice (8주 케톤체 투여가 마우스 지구성 운동수행능력과 골격근의 자가포식에 미치는 영향)

  • Jeong-sun Ju;Min-joo Park;Dal-woo Lee;Dong-won Lee
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.242-251
    • /
    • 2023
  • The purpose of this study was to investigate the effects of 8-week β-hydroxybutyrate (β-HB) administration with and without endurance exercise training on endurance exercise performance and skeletal muscle protein synthesis and degradation using a mouse model. Forty-eight male wild-type ICR mice (8 weeks old) were randomly divided into four groups: sedentary control (Sed+Con), (Sed+Con), sedentary β-HB (Sed+β-HB), exercise control (Exe+Con), and exercise β-HB (Exe+β-HB). β-HB was dissolved in PBS (150 mg/ml) and injected subcutaneously daily (250 mg/kg) for 8 weeks. Mice performed 5 days/week of a 20 min treadmill running exercise for 8 weeks. The running exercise was carried out at a speed of 10 m/min at a 10° incline for 5 min, and then the speed was increased by 1 m/min for every 1 min of the remaining 15 min. Following 8 weeks of treatments, visceral fat mass and skeletal muscle mass, blood parameters, and the markers for autophagy and protein synthesis were analyzed. The data were analyzed with one-way ANOVA (p<0.05) using the SPSS 21 program. Eight weeks of Exe+β-HB treatment significantly lowered blood lactate levels compared with the other three groups (Sed+Con, Sed+β-HB, and Exe+β-HB) Exe+β-HB) (p<0.05). Eight weeks of Exe+β-HB significantly increased maximal running time (time to exhaustion) compared with the Sed+Con and Exe+Con groups (p<0.05). Eight weeks of β-HB administration significantly decreased autophagy flux and autophagy-related proteins in the skeletal muscle of mice (p<0.05). Conversely, the combined treatment of β-HB and endurance exercise training increased protein synthesis (mTOR signaling and translation) (p<0.05). The 8-week β-HB treatment and endurance exercise training had synergistic effects on the increase in endurance performance, increase in protein synthesis, and decrease in protein degradation in the skeletal muscle of mice.

Effects of applied biochar derived from spent oyster mushroom (Pleurotus ostreatus) substrate to Soil Physico-chemical Properties and crop growth responses (느타리버섯 수확후배지 바이오차 시용이 토양 이화학성 및 작물 생육에 미치는 영향)

  • Jae-Eun Jang;Sung-Hee Lim;Min-Woo Shin;Ji-Young Moon;Joo-Hee Nam;Gab-June Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.73-82
    • /
    • 2023
  • This study was conducted to investigate the effect of soil physico-chemical properties and crop growth responses for application of biochar derived from substrate with post harvest of oyster mushroom. The biochar was produced at 450~600℃ using a top-light up draft gasifier (TLUD) production system. As a result of elemental analysis, the biochar used was C 76.2%, H 2.5%, N 3.2%, and H/C was 0.39, which met the international certification standards for biocarbons (IBI) below 0.7. The chemical properties were 10.1 for pH, 1.0% for P2O5, 1.8% for K2O, and 2.5% for CaO. The application rates of biochar were 0, 100, 200, 300, and 500 kg/10a. For cultivation of chinese cabbage and welsh onion, soil organic matter (OM), total nitrogen (T-N), total carbon (T-C), Ex.cation K contents and cation exchange capacity (CEC) in the treatments were increased compared to the no treatment. In addition, the bulk density was lowered and the porosity was increased, improving the soil physical properties in the treated soil. The growth of chinese cabbage and green onion increased with the application of biochar, but the yields of chinese cabbage and green onion did not significantly different among the treatments. Soil carbon sequestration in the treatments enhanced with increasing the amount of biochar application. It is expected to apply the biochar derived from spent oyster mushroom substrate in the eco-friendly farm soil management, improving soil physico-chemical properties.

Ecological Evaluation Using Seaweed Distribution Characteristics along the Coast of Jeju Island (제주도 연안의 해조류 분포 특성을 이용한 생태학적 평가)

  • Sung-Hwan Cho;Young-Seok Noh;Seung-Hwan Won;Soo-Kang Kim;Sang-Mok Jung
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.627-638
    • /
    • 2022
  • This study was conducted at a village fishing farm on 4 peaks on the main island of Jeju Island and 2 peaks on an inhabited island to compare the distribution characteristics of seaweeds along the coast of Jeju Island from May to December 2018. A total of 101 species of seaweeds were surveyed, including 13 species (12.9%) of green algae, 24 species (23.8%) of Phaeophyta, and 64 species (63.4%) of Rhodophyta. The largest number of seaweeds appeared in May and the fewest in October, showing typical features of a temperate sea area. The number of seaweed species that appeared was 66 and 65 species at the water depths of 5 m and 8 m, respectively, and the largest was 74 species at 12 m. The number of seaweeds that appeared by area was the largest at 66 species on Udo Island, an eastern island near Jeju Island, and the lowest at 27 species in Pyoseon-ri, an eastern part of Jeju Island. The important values of emerging species were high in the order of, Ecklonia cavaand Corallina crassissima at 21.1% and 20.3%, respectively, Corallina aberransat 9.2%, Amphora ephedraeaat 6.2%, and Sargassum macrocarpumat 4.4%. Among seaweeds, an average of 11.2 species of coralline algae appeared, and the mean importance value was 32.6% in the sear area. The lowest importance value was 14.7% on Udo Island, and the highest was 41.0% in Pyoseon-ri. The mean ecological evaluation index (EEI) of seaweed colonies ranged from 2.1 to 10. It was the lowest at the water depth of 12 m in Pyoseon-ri in May and June and was 7.3 or higher in other areas, indicating good condition. This study rated the standardized ecological grade I for the water depth of 12 m on Udo Island and grade II for the water depths of 5 m and 8 m in Sagye-ri and on Chujado Island. Grade III was the water depth of 5 m and 12 m in Pyoseon-ri and Guideok 2-ri and the water depth of 5 m and 8 m in Pyeongdae-ri, and grade IV was the water depth of 8 m in Guideok 2-ri.

Principles of Stone Elevation Formation for Walls and Wells in the Silla Dynasty from 5th to 7th Centuries (5~7세기 신라시대 성곽과 우물에 대한 석축입면조형원리)

  • Kang, Seong-Bin;Seo, Seong-Hyeok;Jung, Tae-Yeol
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2023
  • In this study, the following conclusions were drawn by analyzing the size, proportion, shape, angle, distribution, etc. of stones in order to identify the principles of facade molding of stonework of the 5th to 7th centuries of the Silla Dynasty. First, the uniformity of the size of the stones of the stone foundations of the Silla Dynasty was low at -0.8 to 4.1. This means that stones of various sizes were used, from small stones to large stones. In addition, the distribution of large stones in stonework of the Silla Dynasty appeared evenly regardless of height. This was common in the stonework of the Silla Dynasty, regardless of structural classification such as wells and mountain fortresses. It is thought that the Silla people did not only pursue practicality and efficiency in stone construction, but also considered design elements. Second, the proportional deviation of the stones of the stone walls of the Silla Dynasty was high, ranging from 0.861 to 1.515. This means that the stonework of the Silla Dynasty did not use only long flagstone-shaped stones, but used a mixture of long and short stones. Third, the shape average of the stones of the stonework of the Silla Dynasty was low at 0.45, and the shape deviation was high at the maximum of 0.15. This means that the stones as a whole have irregular shapes, and each stone has a high difference in shape. Fourth, the angle deviation of the stones of the Silla Dynasty was 4.3 to 16.2, and the average angle was 2. This means that the angle of each stone on the stone axis of the Silla Dynasty is tilted to the left and right. Fifth, there was no correlation between stone size, slenderness ratio, shape, and angle in the stone axes of the Silla Dynasty. In the case of stone axes in the Joseon Dynasty, there was a positive correlation between stone size and slenderness, and a negative correlation between stone size and shape. It can be said that the stones of the Joseon Dynasty were relatively standardized, but the Silla Dynasty showed the beauty of moderation by keeping the nature of the material and becoming one with the material.

CT Examinations for COVID-19: A Systematic Review of Protocols, Radiation Dose, and Numbers Needed to Diagnose and Predict (COVID-19 진단을 위한 CT 검사: 프로토콜, 방사선량에 대한 체계적 문헌고찰 및 진단을 위한 CT 검사량)

  • Jong Hyuk Lee;Hyunsook Hong;Hyungjin Kim;Chang Hyun Lee;Jin Mo Goo;Soon Ho Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1505-1523
    • /
    • 2021
  • Purpose Although chest CT has been discussed as a first-line test for coronavirus disease 2019 (COVID-19), little research has explored the implications of CT exposure in the population. To review chest CT protocols and radiation doses in COVID-19 publications and explore the number needed to diagnose (NND) and the number needed to predict (NNP) if CT is used as a first-line test. Materials and Methods We searched nine highly cited radiology journals to identify studies discussing the CT-based diagnosis of COVID-19 pneumonia. Study-level information on the CT protocol and radiation dose was collected, and the doses were compared with each national diagnostic reference level (DRL). The NND and NNP, which depends on the test positive rate (TPR), were calculated, given a CT sensitivity of 94% (95% confidence interval [CI]: 91%-96%) and specificity of 37% (95% CI: 26%-50%), and applied to the early outbreak in Wuhan, New York, and Italy. Results From 86 studies, the CT protocol and radiation dose were reported in 81 (94.2%) and 17 studies (19.8%), respectively. Low-dose chest CT was used more than twice as often as standard-dose chest CT (39.5% vs.18.6%), while the remaining studies (44.2%) did not provide relevant information. The radiation doses were lower than the national DRLs in 15 of the 17 studies (88.2%) that reported doses. The NND was 3.2 scans (95% CI: 2.2-6.0). The NNPs at TPRs of 50%, 25%, 10%, and 5% were 2.2, 3.6, 8.0, 15.5 scans, respectively. In Wuhan, 35418 (TPR, 58%; 95% CI: 27710-56755) to 44840 (TPR, 38%; 95% CI: 35161-68164) individuals were estimated to have undergone CT examinations to diagnose 17365 patients. During the early surge in New York and Italy, daily NNDs changed up to 5.4 and 10.9 times, respectively, within 10 weeks. Conclusion Low-dose CT protocols were described in less than half of COVID-19 publications, and radiation doses were frequently lacking. The number of populations involved in a first-line diagnostic CT test could vary dynamically according to daily TPR; therefore, caution is required in future planning.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Preparation and Gas Permeation Performance of Pd-Ag-Cu Hydrogen Separation Membrane Using α-Al2O3 Support (α-Al2O3 지지체를 이용한 Pd-Ag-Cu 수소 분리막의 제조 및 기체투과 성능)

  • Sung Woo Han;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Min Young Ko;Si Eun Kim;Chang Hoon Jung;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • In this experiment, Pd-Ag-Cu membrane was manufactured using electroless plating on an α-Al2O3 support. Pd, Ag and Cu were each coated on the surface of the support through electroless plating and heat treatment was performed for 18 h at 500℃ in H2 in the middle of electroless plating to form Pd alloy. The surface of the Pd-Ag-Cu membrane was observed through Scanning Electron Microscopy (SEM), and the thickness of the Pd membrane was measured to be 7.82 ㎛ and the thickness of the Pd-Ag-Cu membrane was measured to be 3.54 ㎛. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of a Pd-Ag-Cu alloy with a composition of Pd-78wt%, Ag-8.81wt% and Cu-13.19wt%. The gas permeation experiment was conducted under the conditions of 350~450℃ and 1~4 bar in H2 single gas and H2/N2 mixed gas. The maximum H2 flux of the hydrogen separation membrane measured in H2 single gas is 74.16 ml/cm2·min at 450℃ and 4 bar for the Pd membrane and 113.64 ml/cm2·min at 450℃ and 4 bar for the Pd-Ag-Cu membrane. In the case of the separation factor measured in H2/N2 mixed gas, separation factors of 2437 and 11032 were measured at 450℃ and 4 bar.