DOI QR코드

DOI QR Code

Effects of applied biochar derived from spent oyster mushroom (Pleurotus ostreatus) substrate to Soil Physico-chemical Properties and crop growth responses

느타리버섯 수확후배지 바이오차 시용이 토양 이화학성 및 작물 생육에 미치는 영향

  • Jae-Eun Jang (Department of Eco-Friendly microorganism Research Institute, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Sung-Hee Lim (Department of Eco-Friendly microorganism Research Institute, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Min-Woo Shin (Department of Eco-Friendly microorganism Research Institute, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Ji-Young Moon (Department of Eco-Friendly microorganism Research Institute, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Joo-Hee Nam (Department of Eco-Friendly microorganism Research Institute, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Gab-June Lim (Department of Eco-Friendly microorganism Research Institute, Gyeonggi-do Agricultural Research and Extension Services)
  • 장재은 (경기도농업기술원 친환경미생물연구소) ;
  • 임성희 (경기도농업기술원 친환경미생물연구소) ;
  • 신민우 (경기도농업기술원 친환경미생물연구소) ;
  • 문지영 (경기도농업기술원 친환경미생물연구소) ;
  • 남주희 (경기도농업기술원 친환경미생물연구소) ;
  • 임갑준 (경기도농업기술원 친환경미생물연구소)
  • Received : 2023.08.06
  • Accepted : 2023.09.15
  • Published : 2023.09.30

Abstract

This study was conducted to investigate the effect of soil physico-chemical properties and crop growth responses for application of biochar derived from substrate with post harvest of oyster mushroom. The biochar was produced at 450~600℃ using a top-light up draft gasifier (TLUD) production system. As a result of elemental analysis, the biochar used was C 76.2%, H 2.5%, N 3.2%, and H/C was 0.39, which met the international certification standards for biocarbons (IBI) below 0.7. The chemical properties were 10.1 for pH, 1.0% for P2O5, 1.8% for K2O, and 2.5% for CaO. The application rates of biochar were 0, 100, 200, 300, and 500 kg/10a. For cultivation of chinese cabbage and welsh onion, soil organic matter (OM), total nitrogen (T-N), total carbon (T-C), Ex.cation K contents and cation exchange capacity (CEC) in the treatments were increased compared to the no treatment. In addition, the bulk density was lowered and the porosity was increased, improving the soil physical properties in the treated soil. The growth of chinese cabbage and green onion increased with the application of biochar, but the yields of chinese cabbage and green onion did not significantly different among the treatments. Soil carbon sequestration in the treatments enhanced with increasing the amount of biochar application. It is expected to apply the biochar derived from spent oyster mushroom substrate in the eco-friendly farm soil management, improving soil physico-chemical properties.

본 연구는 느타리버섯 수확후배지를 이용하여 바이오차를 제조하고 바이오차 시용이 토양 이화학성과 작물생육에 미치는 영향을 구명하기 위하여 수행되었다. 연구에 사용한 바이오차는 TLUD 연소생산시스템 사용하여 450~600℃에서 제조하고 바이오차의 성분을 조사하였다. 사용한 바이오차는 원소분석결과 C 76.2%, H 2.5%, N 3.2%로 H/C 비율이 0.39로 국제적인 바이오차의 분해 안전성 인증기준(IBI)인 0.7 이하로 나타났으며 pH는 10.1, P2O5 1.0%, K2O 1.8%, CaO 2.5%로 나타났다. 느타리버섯 수확후배지 바이오차를 시용량별로 처리하여 배추, 대파 포장시험 결과 바이오차를 시용하지않은 시험구와 비교하여 바이오차 시용으로 토양의 유기물(OM), 전질소(T-N), 전탄소(T-C), K 함량이 증가하고 치환성양이온교환용량(CEC)이 증가하였다. 또한 토양 물리성에 대한 영향을 조사한 결과 바이오차 시용으로 토양의 용적밀도가 낮아지고 공극률이 높아져 토양 물리성이 개선되는 효과가 나타났다. 바이오차 200 kg/10a 시용시 배추와 대파 생육이 양호하고 최대수량을 나타내었으나 통계적인 차이는 없었다. 바이오차 시용량이 증가할수록 토양 탄소함량이 증가하고 이에 따라 토양 탄소격리량도 증가하였다. 느타리버섯 수확후배지 바이오차를 토양개량제로 활용하면 토양의 이화학성 개선에 효과가 있어 친환경 농가에서 토양개량제로 활용도가 높을것으로 생각되며 농업 부산물의 유기자원화를 통한 버섯 수확후배지의 소비처 확대에도 기여할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업 연구과제(Project No. PJ0157332023)로 수행되었습니다.

References

  1. Moon, Y. H ., Lee, S. S., Kang, T. W. and Cho, S. J., "Effects of Supplemental Levels of Spent Mushroom (Flammulina velutipes) Substrates on Chemical Composition and Quality of Whole Crop Sorghum Silage", J Mushroom Sci Prod., 3, pp. 136~142. (2012).
  2. Semple, K. T., Reid, B. J. and Fermor, T. R., "Impact of composting strategies on the treatment of soils contaminated with organic pollutants", Environmental Pollution, 112, pp. 269~283. (2001). https://doi.org/10.1016/S0269-7491(00)00099-3
  3. Williams, B. C., McMullan, J. T. and McCahey, S., "An initial assessment of spent mushroom compost as a potential energy feedstock", Bioresource Technology, 79, pp. 227~230. (2001). https://doi.org/10.1016/S0960-8524(01)00073-6
  4. Kang, H. W., "Industrial utilization of spent mushroom substrate", J. of Mushrooms, 17(3), pp. 85~92. (2019).
  5. Kim, C. H., Oh, T. S., Shin, D. G., Cho, Y. K., Kim, Y. W. and Ann, S. W., "Study on the development of horticultural media using recycled used mushroom media", J Environ Sci Intern, 23, pp. 303~312. (2014). https://doi.org/10.5322/JESI.2014.23.2.303
  6. National Institute of Horticultural and Herbal Science (NIHHS), "Spent mushroom substrate status and recycling plan", Rural Development Administration (RDA), Korea. (2020).
  7. Seo, Y. H., Kim, S. W., Choi, S. C., Kim, I. J., Kim, K. H. and Kim, G. Y., "Effects of green manure crop and biochar on nitrous oxide emission from red pepper field", Korean J. Soil Sci. Fer., 45(4), pp. 540~543. (2012). https://doi.org/10.7745/KJSSF.2012.45.4.540
  8. Kim, M. H. and Kim, G. H., "Analysis of Environmental Impacts for the Biochar Production and Soil Application", J. Kor. Soc. Environ. Eng., 36(7), pp. 461~468. (2014). https://doi.org/10.4491/KSEE.2014.36.7.461
  9. Choi, Y. S., Shin, J. D., Lee, S. I. and Kim, S. C., "Adsorption Characteristics of Aqueous Ammonium Using Rice hull-Derived Biochar", Korean J Environ Agric., 34(3), pp. 155~160. (2015). https://doi.org/10.5338/KJEA.2015.34.3.25
  10. Shin, J. D., Choi, Y. S. and Lee, S. I., "Estimation of Carbon Sequestration and Its Profit Analysis with Different Application Rates of Biochar during Corn Cultivation Periods", Journal of the Korea Organic Resources Recycling Association, 24(3), pp. 83~90. (2016). https://doi.org/10.17137/korrae.2016.24.3.83
  11. Liang, F., Li, G. T., Lin, Q. M. and Zhao, X. R., "Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil", J. Integr. Agr., 13(3), pp. 525~532. (2014). https://doi.org/10.1016/S2095-3119(13)60708-X
  12. Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B. Y., Ahn, J. H., Lee, Y. H., Al-Wabel, M. I., Lee, S. E. and Lee, S. S., "Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments", J. Hazard. Mater., 301, pp. 179~186. (2016).
  13. Chen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H. and Fuhrmann, J. J., "Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate", Sci. Total Environ., 574, pp. 24~33. (2017).
  14. Woo, S. H., "Biochar for soil carbon sequestration", Clean Technology, 19(3), pp. 201~211. (2013). https://doi.org/10.7464/ksct.2013.19.3.201
  15. Dang, Q., Mba Wright, M. and Brown, R. C., "Ultra low carbon emissions from coal-fired power plants through bio-oil co-firing and biochar sequestration", Environmental Science & Technology, 49(24), pp. 14688~14695. (2015).
  16. Kauffman, N., Dumortier, J., Hayes, D. J., Brown, R. C. and Laird, D. A., "Producing energy while sequestering carbon the relationship between biochar and agricultural productivity", Biomass Bioenergy, 63, pp. 167~176. (2014). https://doi.org/10.1016/j.biombioe.2014.01.049
  17. Shin, J. D., Park, D. Y., Kim, H. S., Lee, S. I. and Hong, S. G., "Evaluation of Agro- Environmental Effect and Soil Carbon Sequestration to different Application Ratios of Supplemented Biochar Pellet in the Paddy during Rice Cultivation", Korean J Environ Agric., 39(2), pp. 114~121. (2020). https://doi.org/10.5338/KJEA.2020.39.2.15
  18. Olmo, M., Alburquerque, J. A., Barron, V., del Campillo, M. C., Gallardo, A., Fuentes, M. and Villar, R., "Wheat growth and yield responses to biochar addition under Mediterranean climate conditions", Biology and Fertility of Soils, 50(8), pp. 1177~1187. (2014). https://doi.org/10.1007/s00374-014-0959-y
  19. Ventura, M., Zhang, C., Baldi, E., Fornasier, F., Sorrenti, G., Panzacchi, P. and Tonon, G., "Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. European", Journal of Soil Science, 65(1), pp. 186~195. (2014). https://doi.org/10.1111/ejss.12095
  20. Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., Wessolek, G. and Kim, K. H., "Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response", Chemosphere, 142, pp. 153~159. (2016). https://doi.org/10.1016/j.chemosphere.2015.06.041
  21. Han, K. H., Zhang, Y. S., Jung, K. H., Cho, H. R. and Sonn, Y. K., "Evaluating germination of lettuce and soluble organic carbon leachability in upland sandy loam soil applied with rice husk and food waste biochar", Korean Journal of Agricultural Science, 41(4), pp. 369~377. (2014). https://doi.org/10.7744/cnujas.2014.41.4.369
  22. Park, D. G., Lee, J. M., Choi, E. J., Gwon, H. S., Lee, H. S., Park, H. R., Oh, T. K. and Lee, S. I., "Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars", Journal of the Korea Organic Resources Recycling Association, 30(4), pp. 67~83. (2022).
  23. Park, D. G., Hong, S. G., Jang, E. S. and Shin, J. D., "Assessment of an Optimum Biochar Application Rate for Tomato (Solanum lycopersicum L.) Cultivation D", Journal of the Korea Organic Resources Recycling Association, 27(1), pp. 39~48. (2019).
  24. International Biochar Initiative (IBI), "Standardized product definition and product testing guidelines for biochar that is used in soil IBI-STD-2.1.". (2015).
  25. Park, D. G., Lee, J. M., Choi, E. J., Gwon, H. S., Lee, H. S., Park, H. R., Oh, T. K. and Lee, S. I., "Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars", Journal of the Korea Organic Resources Recycling Association, 30(4), pp. 67~83. (2022).
  26. National Institute of Agricultural Science and Technology (NIAST), "Investigation and standard for agriculture experiment", Rural Development Administration (RDA), Korea. (2003).
  27. National Institute of Agricultural Science and Technology (NIAST), "Analytical methods of soil and plant", Rural Development Administration (RDA), Korea. (2000).
  28. Chan, K. Y. and Xu, Z., Biochar : nutrient properties and their enhancement, In J. Lehmann and S. Joseph, eds., Biochar for environmental management, Science and Technology, pp. 67~84. (2009).
  29. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., Petersen, J. and Neves, E. G., "Black Carbon Increases Cation Exchange Capacity in Soils", Soil Science Society of America Journal, 70, pp. 1719~1730. (2006). https://doi.org/10.2136/sssaj2005.0383
  30. Jeong, S. J., Oh, J. S., Seok, W. Y. and Cho, M. Y., "The Effect of Treatment of Woody Charred Materials on the Growth and Components of Tomato and Chinese Cabbage", Korean J. Org. Agric., 16(4), pp. 455~469. (2008).