• Title/Summary/Keyword: 최대우도추정

Search Result 103, Processing Time 0.021 seconds

Comparisons of the Performance with Bayes Estimator and MLE for Control Charts Based on Geometric Distribution (기하분포에 기초한 관리도에서 베이즈추정량과 최대우도추정량 사용의 성능 비교)

  • Hong, Hwiju;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.907-920
    • /
    • 2015
  • Charts based on geometric distribution are effective to monitor the proportion of nonconforming items in high-quality processes where the in-control proportion nonconforming is low. The implementation of this chart is often based on the assumption that in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice for high-quality process where the proportion of nonconforming items is very small. An inaccurate estimate of the parameter can result in estimated control limits that cause unreliability in the monitoring process. The maximum likelihood estimator (MLE) is often used to estimate in-control proportion nonconforming. In this paper, we recommend a Bayes estimator for the in-control proportion nonconforming to incorporate practitioner knowledge and avoid estimation issues when no nonconforming items are observed in the Phase I sample. The effects of parameter estimation on the geometric chart and the geometric CUSUM chart are considered when the MLE and the Bayes estimator are used. The results show that chart performance with estimated control limits based on the Bayes estimator is generally better than that based on the MLE.

STBL 모형의 모수추정 및 예측방법의 비교

  • Kim, Deok-Gi;Lee, Seong-Deok;Kim, Seong-Su;Lee, Chan-Hui;Lee, Geon-Myeong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.129-142
    • /
    • 2006
  • 본 논문은 공간시계열자료가 공간의 위치와 시간의 흐름에 따라 동시에 관측되는 분야인 기상, 지질, 천문, 생태, 역학 등에서 아주 넓이 사용되고 있고 그 수요가 점차 증가하는 이 시기에 복잡한 공간시계열 중선형(STBL) 모형에 대한 모수 추정 방법 중 수치 해석적 방법인 Newton-Raphson 방법과 Kalman-Filter 방법을 비교하고, 두 가지 방법에 의한 예측력을 비교하여 보았다.

  • PDF

Parameter Generation Algorithm for LSTM-RNN-based Speech Synthesis (LSTM-RNN 기반 음성합성을 위한 파라미터 생성 알고리즘)

  • Park, Sangjun;Hahn, Minsoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.105-106
    • /
    • 2017
  • 본 논문에서는 최대 우도 기반 파라미터 생성 알고리즘을 적용하여 인공 신경망의 출력인 음향 파라미터 열의 정확성 및 자연성을 향상시키는 방법을 제안하였다. 인공 신경망의 출력으로 정적 특징벡터 뿐 만 아니라 동적 특징벡터도 함께 사용하였고, 미리 계산된 파라미터 분산을 파라미터 생성에 사용하였다. 추정된 정적, 동적 특징벡터의 평균, 분산을 EM 알고리즘에 적용하여 최대 우도 기준 파라미터를 추정할 수 있다. 제안된 알고리즘은 파라미터 생성 시 동적 특징벡터 및 분산을 함께 적용하여 시간축에서의 자연성을 향상시켰다. 제안된 알고리즘의 객관적 평가로 MCD, F0 의 RMSE 를 측정하였고, 주관적평가로 선호도 평가를 실시하였다. 그 결과 기존 알고리즘 대비 객관적, 주관적 성능이 향상되는 것을 검증하였다.

  • PDF

An Estimation of Parameters in Weibull Distribution Using Least Squares Method under Random Censoring Model (임의 중단모형에서 최소제곱법을 이용한 와이블분포의 모수 추정)

  • Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.263-272
    • /
    • 1996
  • In this parer, under random censorship model, an estimation of scale and shape parameters in Weibull lifetime model is considered. Based on nonparametric estimator of survival function, the least square method is proposed. The proposed estimation method is simple and the performance of the proposed estimator is as efficient as maximum likelihood estimators. An example is presented, using field winding data. Simulation studies are performed to compare the performaces of the proposed estimator and maximum likelihood estimator.

  • PDF

Sparse Matrix Computation in Mixed Effects Model (희소행렬 계산과 혼합모형의 추론)

  • Son, Won;Park, Yong-Tae;Kim, Yu Kyeong;Lim, Johan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.281-288
    • /
    • 2015
  • In this paper, we study an approximate procedure to evaluate a penalized maximum likelihood estimator (MLE) for a mixed effects model. The procedure approximates the Hessian matrix of the penalized MLE with a structured sparse matrix or an arrowhead type matrix to speed its computation. In this paper, we numerically investigate the gain in computation time as well as approximation error from the considered approximation procedure.

Power transformation in quasi-likelihood innovations for GARCH volatility (금융 시계열 변동성 추정을 위한 준-우도 이노베이션의 멱변환)

  • Sunah, Chung;Sun Young, Hwang;Sung Duck, Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.6
    • /
    • pp.755-764
    • /
    • 2022
  • This paper is concerned with power transformations in estimating GARCH volatility. To handle a semi-parametric case for which the exact likelihood is not known, quasi-likelihood (QL) rather than maximum-likelihood method is investigated to best estimate GARCH via maximizing the information criteria. A power transformation is introduced in the innovation generating QL estimating functions and then optimum power is selected by maximizing the profile information. A combination of two different power transformations is also studied in order to increase the parameter estimation efficiency. Nine domestic stock prices data are analyzed to order to illustrate the main idea of the paper. The data span includes Covid-19 pandemic period in which financial time series are really volatile.

Threshold estimation for the composite lognormal-GPD models (로그-정규분포와 파레토 합성 분포의 임계점 추정)

  • Kim, Bobae;Noh, Jisuk;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.807-822
    • /
    • 2016
  • The composite lognormal-GPD models (LN-GPD) enjoys both merits from log-normality for the body of distribution and GPD for the thick tailedness of the observation. However, in the estimation perspective, LN-GPD model performs poorly due to numerical instability. Therefore, a two-stage procedure, that estimates threshold first then estimates other parameters later, is a natural method to consider. This paper considers five nonparametric threshold estimation methods widely used in extreme value theory and compares their performance in LN-GPD parameter estimation. A simulation study reveals that simultaneous maximum likelihood estimation performs good in threshold estimation, but very poor in tail index estimation. However, the nonparametric method performs good in tail index estimation, but introduced bias in threshold estimation. Our method is illustrated to the service time of an Israel bank call center and shows that the LN-GPD model fits better than LN or GPD model alone.

A Bayes Linear Estimator for Multi-proprotions Randomized Response Model (무관질문형 다지확률응답모형에서의 베이즈 선형추정량에 관한 연구)

  • 박진우
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.1
    • /
    • pp.53-66
    • /
    • 1993
  • A Bayesian approach is suggested to the multi-proportions randomized response model. O'Hagan's (1987) Bayes linear estimator is extended to the inference of unrelated question-type randomized response model. Also some numerical comparisons are provided to show the performance of the Bayes linear estimator under the Dirichlet prior.

  • PDF

Parameter estimation for exponential distribution under progressive type I interval censoring (지수 분포를 따르는 점진 제1종 구간 중도절단표본에서 모수 추정)

  • Shin, Hye-Jung;Lee, Kwang-Ho;Cho, Young-Seuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.927-934
    • /
    • 2010
  • In this paper, we introduce a method of parameter estimation of progressive Type I interval censored sample and progressive type II censored sample. We propose a new parameter estimation method, that is converting the data which obtained by progressive type I interval censored, those data be used to estimate of the parameter in progressive type II censored sample. We used exponential distribution with unknown scale parameter, the maximum likelihood estimator of the parameter calculates from the two methods. A simulation is conducted to compare two kinds of methods, it is found that the proposed method obtains a better estimate than progressive Type I interval censoring method in terms of mean square error.

Direction Estimation of Multiple Sound Sources Using Circular Probability Distributions (순환 확률분포를 이용한 다중 음원 방향 추정)

  • Nam, Seung-Hyon;Kim, Yong-Hoh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.308-314
    • /
    • 2011
  • This paper presents techniques for estimating directions of multiple sound sources ranging from $0^{\circ}$ to $360^{\circ}$ using circular probability distributions having a periodic property. Phase differences containing direction information of sources can be modeled as mixtures of multiple probability distributions and source directions can be estimated by maximizing log-likelihood functions. Although the von Mises distribution is widely used for analyzing this kind of periodic data, we define a new class of circular probability distributions from Gaussian and Laplacian distributions by adopting a modulo operation to have $2{\pi}$-periodicity. Direction estimation with these circular probability distributions is done by implementing corresponding EM (Expectation-Maximization) algorithms. Simulation results in various reverberant environments confirm that Laplacian distribution provides better performance than von Mises and Gaussian distributions.