• Title/Summary/Keyword: 최대변위

Search Result 1,022, Processing Time 0.022 seconds

Inelastic Seismic Behavior of Low-story Standard School Buildings according to Characteristics of Earthquake Loads and Hysteresis Models (지진하중의 특성과 이력모델에 따른 저층 표준학교건물의 비탄성 지진거동)

  • Kim, Jin-Sang;Yoon, Tae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4294-4301
    • /
    • 2012
  • The inelastic response characteristics of the standard school buildings depending on selection of hysteresis models and variable earthquakes are studied. Three earthquake records of El-centro, Santa-Monica, Taft in accordance with KBC2009 standard and four inelastic hysteresis models such as Degrading tri-linear model, Clough model, Takeda model, and Modified Takeda model are used. The inelastic response characteristics such as story shear force, story drift ratio, story displacement are reviewed. As results, El-centro earthquake shows large response in transverse direction and Santa Monica earthquake shows larger response in longitudinal direction on the contrary. Taft earthquake shows less variation of story drift ratio and story displacement for all hysteresis models and stable response.

A Study on Behavior of the Earth Retaining Structure by Field Measurement and Numerical Analysis (현장계측과 수치해석에 의한 흙막이구조물의 거동 비교분석)

  • Wo, Jongtae
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.286-295
    • /
    • 2017
  • In this study, it is compared various coefficients of subgrade reaction for application of numerical analysis based on measured data by using various theories and empirical formula. The ratio of the maximum and minimum value is 6.80 at the top of wall but it is 1.06 at the maximum displacement point depends on change of calculated coefficient of subgrade reaction. The data of displacement were generally similar considering an increment of a coefficient of subgrade reaction. And the results of comparison of the displacement at the maximum displacement point by numerical analysis and measured data show similar displacement shape.

Evaluation of Inelastic Displacement Ratios for Smooth Hysteretic Behavior Systems (완만한 이력거동 시스템에 대한 비탄성 변위비의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.11-26
    • /
    • 2011
  • The inelastic displacement ratio is defined as the ratio of the peak inelastic displacement to the peak linear elastic displacement. The inelastic displacement ratio allows simple evaluation of the peak inelastic displacement directly from the peak elastic displacement without computation of the inelastic response. Existing research of the inelastic displacement ratio is limited to piece-wise linear systems such as bilinear or stiffness degrading systems. In this paper, the inelastic displacement ratio is investigated for smooth hysteretic behavior systems subjected to near- and far-fault earthquakes. A simple formula of the inelastic displacement ratio is proposed by using a two step procedure of regression analysis.

Centrifuge Modeling on the Deformation Modes of Dredged Clay Slope (준설 점토사면의 변형양상에 관한 원심모델링)

  • Ahn, Kwangkuk;Kim, Jeongyeol;Zheng, Zhaodian;Lee, Cheokeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.19-27
    • /
    • 2007
  • In this study, the centrifugal tests were performed with varying the angle of slope such as 1:3, 1:2.5, and 1:2 in order to analyze the deformation and failure type of dredged clay slope for a short term. The displacement mode, displacement vector and the variation of pore pressure with the different slope angle were measured. As a results, even though the displacement in the slope after 4 months were developed in the case of 1:3 for the dredged slope, there are little problems to obtain the stability of dredged slope because the original construction section maintains. Also, in the case of 1:2.5 after 4 months the local slope failure occurred and in the case of 1:2 after 2 months the circle failure starting from the point of the tensile crack occurred. After reviewing the results, the maximum vertical displacement occurred at the crest of slope and maximum horizontal displacement was about double of maximum vertical displacement.

  • PDF

Design Review of Inter-Modal Terminal Platform for Temperature Load (온도하중을 고려한 인터모달 터미널 플랫폼의 설계 검토)

  • Kim, Kyoung-Su;Kim, Da-Ae;Kim, Heung-Rae;Hyun, Eun-Tack
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.305-311
    • /
    • 2019
  • In this study, we examined the proper spacing between the expansion joints according to the temperature load of the inter-modal terminal platform infrastructure to implement a new inter-modal automated freight transport system, which we intend to introduce in Korea. To review the proper expansion joint spacing of the terminal platforms, we set the maximum expansion joint spacing according to the regional temperature changes using the equation proposed by the Federal Construction Council (FCC) of the United States. Then, the maximum displacement value, which was calculated through the structural analysis program, and the limit of the horizontal displacement of the building structure were compared. The proper expansion joint spacing was selected as the slab length at which the maximum displacement of the structure, due to temperature changes, was below the horizontal displacement limit. Based on the application of maximum expansion joint spacing for each region calculated through the FCC's suggestion, the maximum displacement that could occur within the limit of the lateral displacement of the structure was determined.

Ground Behavior Behind Soil Nailed Wall by Feed Back Analysis (역해석에 의한 쏘일네일링 벽체 배면지반의 거동 연구)

  • Jeon, Seong-Kon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.5-13
    • /
    • 2003
  • The soil nailing is one of the useful support-system in urban excavation because of the presence of other structures in the vicinity Since the soil nailing system was introduced, model experiments and theoretical studies have been performed to investigate behavior of soil nailed wall. However, there are few data in the case of multi-layered soil strata just like Seoul Metropolitan area in Korea. The feed back analyses are carried out using the measured wall displacement data for soil nailing construction sites with multi-layered strata in order to analyze the distance and the coefficients of extension zone of ground behind soil nailed wall. As a result, the distance of extension zone increased with increasing of the final excavation depth and the ratio of the distance to the final excavation depth was shown to be about 94% of the final excavation depth. Also, the coefficients of extension zone increased with enlargement of soil layer thickness and converged into constant value of 1.05. On the other hand, the maximum vertical displacements by the feed back analysis and Caspe's method were shown to be approximately 80%, 150~280% of the maximum horizontal displacement respectively.

Design Methods of the Longitudinal Motion-Limiting Devices in Multi-Span Continuous Bridges (다경간연속교의 교축방향 이동제한장치의 설계방법)

  • 전귀현;이지훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.145-154
    • /
    • 1998
  • The motion-limiting devices can be used for reducing the maximum and residual displacements of the multi-span continuous bridges with inelastic elements such as isolation bearings and plastic hinges formed in piers. For the design of motion-limiting device, the nonlinear time history analysis is required. But the time history analysis is time consuming and very complex. This study suggests the simple design procedure of the motion-limiting devices using the equivalent elastic analysis method and the acceleration-displacement spectrum concept. The suggested design procedure can be used very effectively for determining the location and gap size of the motion-limiting devices.

  • PDF

Examination of Allowable Displacement by Structural Analysis of IPM Bridge (토압분리형 교량의 구조해석을 통한 허용 변위량 검토)

  • Kim, Hong-Bae;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.534-544
    • /
    • 2019
  • Because the pile-bent of IPM Bridge is projected from the soil surface, excessive displacement of abutment can be induced. According to design guide of IPM Bridge, the shape of the bridges used in this study was applied to the maximum applicable 120.0m span, 30-degree for skew angle, and 10.0m for the protruded pile-bent height. The maximum displacement by the maximum span application condition of the IPM Bridge was calculated using this bridge model, and the safety of a horizontal displacement of the IPM Bridge was investigated based on the allowable displacement presented by Bozozuk. The maximum horizontal displacement of the IPM Bridge was calculated to be larger in the winter shrinkage condition than in the summer expansion condition, the horizontal displacements were more affected by the length of a bridge than by the skew angle. And the vertical displacement was not affected by the skew angle and length. As the span increases, the horizontal displacement increases significantly, the horizontal displacement at 120.0m span length was found to exceed the allowable displacement proposed by Bozozuk. However, the moment generated in the pile-bent did not exceed the plastic moment.

The Stability of Excavated Soft Ground Supported by Sheet-pile Walls (강널말뚝 흙막이벽으로 시공된 굴착연약지반의 안정성)

  • Hong Won-Pyo;Kim Dong-Uk;Song Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.5-14
    • /
    • 2005
  • Based on the field measuring data obtained from excavation sections in Inchon International Airport project, the relationships between the horizontal displacement of sheet-pile walls and the deformations of soft ground around the excavation were investigated. The horizontal displacements of walls according to supporting method occur, and the displacements were found to become larger in the order of anchors, anchors with struts, and struts. The depths of maximum horizontal displacement are varied with supporting systems. If the stability number shows lower than ${\pi}$, the maximum horizontal displacement and the velocity of maximum horizontal displacement are respectively developed less than $1\%$ of excavation depth and 1mm/day. When the stability number shows lower than ${\pi}+2$, the maximum horizontal displacement and the velocity are respectively developed less than $2.5\%$ of excavation depth and 2mm/day. Also, when the stability number shows more than ${\pi}+2$, the maximum horizontal displacement and the velocity rapidly increase. Also, the maximum horizontal displacement is found to increase rapidly when N value is less than 10. The maximum horizontal displacement increases with decreasing the factor of safety against basal heave (Terzaghi, 1943), and the maximum horizontal displacement is found to increase rapidly when the factor of safety against basal heave is greater than 2.0. This value can be proposed as the criterion for the factor of safety against basal heave in Korea.

Three Dimensional Motion of the Center of Mass While Crossing an Obstacle in Young and Older Adults (젊은 성인과 노인의 장애물 보행 시 신체질량중심의 3차원적 움직임)

  • Son, nam-kuk;Kim, hyeong-dong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.381-382
    • /
    • 2013
  • 본 연구의 목적은 젊은 성인과 노인의 장애물 보행 시 신체질량중심의 변위와 최대속도를 3차원적으로 비교 분석하여 노인의 낙상위험 및 균형능력을 평가할 수 있는 중요한 요소가 될 수 있는지를 검증하는데 있다. 본 연구의 대상은 건강한 젊은 성인 10명(남성 6명/여성 4명, $24.6{\pm}1.9$세)과 65세 이상 건강한 노인 10명(남성 1명/여성 9명)으로 선정하였다. 각 피험자 신장의 10% 높이의 장애물 보행을 실시하였으며 동작 분석 장비를 통해 신체질량중심의 변위와 최대속도를 3차원적으로 분석하였다. 전후방향에서는 젊은 성인 집단의 변위가 더 크고(p=.019) 최대속도가 더 빠르게 나타났으며(p<.001), 좌우방향에서는 노인 집단의 변위가 더 크고(p=.004), 더 빠르게 나타났다(p<.001). 수직방향에서의 변위는 유의한 차이가 없었고(p=.135), 최대 속도는 젊은 성인 집단이 더 빠르게 나타났다(p<.001). 신체질량중심의 좌우방향에서의 크고 빠른 움직임은 노인의 동적 균형능력 저하로 인해 넘어가는 발(swing limb)의 안정적인 지지면 딛기를 위한 보상적 조절로 여겨지며, 따라서 노인의 낙상위험 및 균형능력을 평가할 수 있는 중요한 요소가 될 수 있을 것으로 사료된다.

  • PDF