• Title/Summary/Keyword: 최대변동

Search Result 969, Processing Time 0.024 seconds

Application Rate Modification of Paddy Herbicide Quinclorac Depending on Different Cultural Patterns (벼 작부양식(作付樣式)의 차이(差異)에 따른 제초제(除草劑) QUINCLORAC 의 선택활성(選擇活性) 변동(變動))

  • Guh, J.O.;Im, W.H.;Han, S.U.;Kuk, Y.I.
    • Korean Journal of Weed Science
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 1992
  • Not only reducing the carry-over effects of quinclorac [3, 7-dichloro-8-quinoline carboxylic acid] used in paddy field to some following vegetable crops but also rationalizing agro-ecology conservation and farm economy, the reducing feasibility of application rates by various cropping patterns and application timing after rice seeding and transplanting. Four cropping patterns namely dry direct seeding(DDS), flooded direct seed(FDS), transplanting of 8 days old early seedlings(EST) and 25 days old machinery seedling(MST) were experimented with 7 application timings as 0, 5, 10, 15, 20, 25, 30 days after seeding/transplanting and 9 levels of application rates as 0, 75, 150, 225, 300, 375, 450, 525, and 600g ai/ha of the chemical, respectively. Within the maximum permitted limit of rice phytotoxicity, the minimum application rate of quinclorac to complete control of Echinochloa crus-galli as influenced by various cropping patterns with application timing could be evaluated as follows : A. Dry direct seeding : The minimized application rate at application timing upto 10 days after seeding (DAS) was counted 150g ai/ha, and delaying upto 15-30 DAS, the rates were increased upto 225-525g ai/ha. B. Flooded direct seeding and transplanting : The application rates were minimized 75g ai/ha at application timing upto 10 days after seeding/transplanting(DAS/T), 150g ai/haupto 15 DAS/T, and 225g ai/ha at later than 20 DAS/T, respectively.

  • PDF

Comparison of Methods for Estimating Extreme Significant Wave Height Using Satellite Altimeter and Ieodo Ocean Research Station Data (인공위성 고도계와 이어도 해양과학기지 관측 자료를 활용한 유의파고 극값 추정 기법 비교)

  • Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seung;Jeong, Kwang-Yeong;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.524-535
    • /
    • 2021
  • Rapid climate change and oceanic warming have increased the variability of oceanic wave heights over the past several decades. In addition, the extreme wave heights, such as the upper 1% (or 5%) wave heights, have increased more than the heights of the normal waves. This is true for waves both in global oceans as well as in local seas. Satellite altimeters have consistently observed significant wave heights (SWHs) since 1991, and sufficient SWH data have been accumulated to investigate 100-year return period SWH values based on statistical approaches. Satellite altimeter data were used to estimate the extreme SWHs at the Ieodo Ocean Research Station (IORS) for the period from 2005 to 2016. Two representative extreme value analysis (EVA) methods, the Initial Distribution Method (IDM) and Peak over Threshold (PoT) analysis, were applied for SWH measurements from satellite altimeter data and compared with the in situ measurements observed at the IORS. The 100-year return period SWH values estimated by IDM and PoT analysis using IORS measurements were 8.17 and 14.11 m, respectively, and those using satellite altimeter data were 9.21 and 16.49 m, respectively. When compared with the maximum value, the IDM method tended to underestimate the extreme SWH. This result suggests that the extreme SWHs could be reasonably estimated by the PoT method better than by the IDM method. The superiority of the PoT method was supported by the results of the in situ measurements at the IORS, which is affected by typhoons with extreme SWH events. It was also confirmed that the stability of the extreme SWH estimated using the PoT method may decline with a decrease in the quantity of the altimeter data used. Furthermore, this study discusses potential limitations in estimating extreme SWHs using satellite altimeter data, and emphasizes the importance of SWH measurements from the IORS as reference data in the East China Sea to verify satellite altimeter data.

Numerical Simulation of Nonlinear Interaction between Composite Breakwater and Seabed under Irregular Wave Action by olaFlow Model (olaFlow 모델에 의한 불규칙파 작용하 혼성방파제-해저지반의 비선형상호작용에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Jung, Uk Jin;Choi, Goon-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.129-145
    • /
    • 2019
  • For the design of composite breakwater as representative one of the coastal and harbor structures, it has been widely discussed by the researchers about the relation between the behavior of excess-pore-water pressure inside the rubble mound and seabed caused by the wave load and its structural failure. Recently, the researchers have tried to verify its relation through the numerical simulation technique. The above researches through numerical simulation have been mostly applied by the linear and nonlinear analytic methods, but there have been no researches through the numerical simulation by the strongly nonlinear mutiphase flow analytical method considering wave-breaking phenomena by VOF method and turbulence model by LES method yet. In the preceding research of this study, olaFlow model based on the mutiphase flow analytical method was applied to the nonlinear interaction analysis of regular wave-composite breakwater-seabed. Also, the same numerical techniques as preceding research are utilized for the analysis of irregular wave-composite breakwater-seabed in this study. Through this paper, it is investigated about the horizontal wave pressures, the time variations of excess-pore-water pressure and their frequency spectra, mean flow velocities, mean vorticities, mean turbulent kinetic energies and etc. around the caisson, rubble mound of the composite breakwater and seabed according to the changes of significant wave height and period. From these results, it was found that maximum nondimensional excess-pore water pressure, mean turbulent kinetic energy and mean vorticity come to be large equally on the horizontal plane in front of rubble mound, circulation of inflow around still water level and outflow around seabed is formed in front of rubble caisson.

Assessing Impacts of Global Warming on Rice Growth and Production in Korea (지구온난화에 따른 벼 생육 및 생산성 변화 예측)

  • Shim, Kyo-Moon;Roh, Kee-An;So, Kyu-Ho;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.121-131
    • /
    • 2010
  • This study was carried out to evaluate spatial variations in rice production areas by simulating rice growth and yield with CERES-Rice growth model under GCM $2{\times}CO_2$ climate change scenarios. A modified window version(v4.0) of CERES-Rice was used to simulate the growth and development of three varieties, representing early, medium, and late maturity classes. Simulated growth and yield data of the three cultivars under the climate for 1971 to 2000 was set as a reference. Compared with the current normal(1971 to 2000), heading period from transplanting to heading date decreased by 7~8 days for the climate in $2^{\circ}C$ increase over normal, and 16~18 days for the climate in UKMO with all maturity classes, while change of ripening period from heading to harvesting date was different with maturity classes. That is, physical maturity was shortened by 1~3 days for early maturity class and 14~18 days for late maturity class under different climate change scenarios. Rice yield was in general reduced by 4.5%, 8.2%, 9.9%, and 14.9% under the climate in $2^{\circ}C$, $3^{\circ}C$, $4^{\circ}C$, and about $5^{\circ}C$ increase, respectively. The yield reduction was due to increased high temperature-induced spikelet sterility and decreased growth period. The results show that predicted climate changes are expected to bring negative effects in rice production in Korea. So, it is required for introduction of new agricultural technologies to adapt to climate change, which are, for example, developing new cultivars, alternations of planting dates and management practices, and introducing irrigation systems, etc.

Analysis of Commercial Organic Compost Manufactured with Livestock Manure (국내 유통중인 가축분퇴비의 품질 특성)

  • Kim, Myung-Sook;Kim, Seok-Cheol;Park, Seong-Jin;Lee, Chang-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.21-29
    • /
    • 2018
  • The contents of total nitrogen(T-N), phosphate($T-P_2O_5$), and potash($T-K_2O$) are important factors to determine the application rate of the livestock compost to prevent nutrients accumulation and maintain their appropriate levels in arable lands. The concentrations of nutrient, organic matter, salt, water content, heavy metal in livestock compost in circulation were investigated with 659 samples from 2016 to 2017. In order to investigate the fluctuation nutrient contents of livestock composts with the same product name, 19 samples were collected and analyzed T-N, and $T-P_2O_5$, and $T-K_2O$ concentration during two years. The mean levels of T-N, $T-P_2O_5$, and $T-K_2O$ in livestock composts of from 2016 to 2017 were 1.73%, 1.88%, and 1.66%, respectively. The average contents of organic matter, water, and salt were 38.9%, 40.9%, and 1.2%, respectively. There were found that the maximum concentrations of Cr, Ni, Cu, and Zn in some livestock composts were exceeded the criteria of the official standard of commercial fertilizer. The maximum variation coefficient of T-N, $T-P_2O_5$ and $T-K_2O$ content of livestock composts was found to be 24%, 27%, and 50% on average, respectively. In order to manage the nutrients in agricultural soils, it will be reasonable that the error range of T-N and $T-P_2O_5$ content in livestock composts should be recommended to be 27% in mean as variation coefficient in case of displaying the nutrient element in liverstock compost.

Spatiotemporal and Longitudinal Variability of Hydro-meteorology, Basic Water Quality and Dominant Algal Assemblages in the Eight Weir Pools of Regulated River(Nakdong) (낙동강 8개 보에서 기상수문·기초수질 및 우점조류의 시공간 종적 변동성)

  • Shin, Jae-Ki;Park, Yongeun
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.268-286
    • /
    • 2018
  • The eutrophication and algal blooms by harmful cyanobacteria (CyanoHAs) and freshwater redtide (FRT) that severely experiencing in typical regulated weir system of the Nakdong River are one of the most rapidly expanding water quality problems in Korea and worldwide. To compare with the factors of rainfall, hydrology, and dominant algae, this study explored spatiotemporal variability of the major water environmental factors by weekly intervals in eight weir pools of the Nakdong River from January 2013 to July 2017. There was a distinct difference in rainfall distribution between upstream and downstream regions. Outflow discharge using small-scale hydropower generation, overflow and fish-ways accounted for 37.4%, 60.1% and 2.5%, respectively. Excluding the flood season, the outflow was mainly due to the hydropower release through year-round. These have been associated with the drawdown of water level, water exchange rate, and the significant impact on change of dominant algae. The mean concentration (maximum value) of chlorophyll-a was $17.6mg\;m^{-3}$ ($98.2mg\;m^{-3}$) in the SAJ~GAJ and $29.6mg\;m^{-3}$ ($193.6mg\;m^{-3}$) in the DAS~HAA weir pools reaches, respectively. It has increased significantly in the downstream part where the influence of treated wastewater effluents (TWEs) is high. Indeed, very high values (>50 or $>100mg\;m^{-3}$) of chlorophyll-a concentration were observed at low flow rates and water levels. Algal assemblages that caused the blooms of CyanoHAs and FRT were the cyanobacteria Microcystis and the diatom Stephanodiscus populations, respectively. In conclusion, appropriate hydrological management practices in terms of each weir pool may need to be developed.

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos (HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석)

  • KIM, EUN YOUNG;AN, SUNG MIN;CHOI, DONG HAN;LEE, HOWON;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.

Introduction of the International Standardization of ISO in the Production and Quality of Herbal Medicines and a Review of Countermeasures (한약재 생산 및 품질부문의 ISO국제표준화 등재현황 소개 및 대응방안 고찰)

  • Kim, Yong Il;Kang, Young Min;Han, Sin-Hee;Hur, Mok;Kim, Young Guk;Chang, Jae Ki
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.257-268
    • /
    • 2018
  • Recently, the international standardization of ISO in the field of Oriental Herbal Medicine has been progressing rapidly under the direction of China's promotion. China's intention to promote international standardization is to extend its influence to the world and beyond the domestic market. The Oriental medicine system in East Asia has similar roots in academic terms, but the medicines that can be supplied and received in each country are different and have developed independently. The international standardization of medicinal herbs is expected to function in a direction that weakens such differentiation and independence. From a commercial point of view, international standardization is no different from creating evaluation criteria for oriental medicinal products, and it is expected that its potential impact on domestic and overseas markets and producers will be large. In particular, the international standardization centered on China can lead to favorable evaluation criteria for China, which may further negatively affect the market competitiveness of domestic raw materials, which have been pushed back by Chinese manufacturers. If the domestic production base is weakened, not only will the farmers suffer but the supply and demand of raw materials will also be manipulated, safety management control will be reduced, and the development of oriental herbal products using domestic raw materials will be hurt. Therefore, in the promotion of international standardization, it is necessary not only to reflect the value of Korean herbal medicine but also to provide strategic responses to protect the domestic production base. However, in the case of recent initiatives, there is no precedent in analyzing influence on the production partners and the related industries. In addition, there are few related papers and reports on the subject, so the publicity process has not been done sufficiently. In response to this, this study will examine the countermeasures against the international standardization of herbal medicines through reviewing its present status and evaluating the agenda of the Korean initiative.

Phytoplankton Response to Short-term Environmental Changes in the Vicinity of a Fish Cage Farm of Tongyeong Obi in Summer (통영 오비도 어류양식장 주변에서 하계 수계 내 단주기 환경요인의 변화에 따른 미세조류 반응)

  • Lee, Minji;Baek, Seung Ho
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 2017
  • In order to assess the potential environmental factors in the vicinity of a fish cage farm, we investigated the biotic and abiotic factors during a short-term period in summer 2016 in two inner stations of Tongyeong Obi. High water temperature on August 10th was apparent among the full depth of up to 29℃, which might have been related to the abnormally high temperatures of large amounts of the Changjiang River discharge along the Tongyeong coast. The concentration of nitrate+nitrite, ammonium, phosphate, and silicate ranged from 0.08 to 5.11 μM, 0.08 to 34.62 μM, 0.01 to 1.15 μM, and 1.46 to 31.79 μM, respectively. The nutrients were mainly supplied by precipitation and leaching from the bottom sediments in the fish culture farm area. It was not retained for a long duration because of the phytoplankton consumption and diffusion by water currents. The chlorophyll a concentration varied from 0.49 ㎍ l-1 to 7.39 ㎍ l-1. At that time, Chaetoceros debilis, C. pseudocurvisetus, and Pseudo-nitzschia delicatissima were rapidly proliferated and reached the level of 4.74 × 109 cells l-1. In particular, the lowest dissolved oxygen was recorded at 4.52 ㎍ l-1 at the bottom layer after bloom. Therefore, even though phytoplankton blooms in summer have frequently occurred in a fish culture farm area, the oxygen-deficient environments were not found in neither the surface nor bottom layers, which implied that the water masses might be well exchanged from the mouth of the northwest and southeast between Obi and Mireuk Island in the study area.

Evaluation of Water Quality Characteristics of Saemangeum Lake Using Statistical Analysis (통계분석을 이용한 새만금호의 수질특성 평가)

  • Jong Gu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.297-306
    • /
    • 2023
  • Saemangeum Lake is the largest artificial lake in Korea. The continuous deterioration of lake water quality necessitates the introduction of novel water quality management strategies. Therefore, this study aims to identify the spatiotemporal water quality characteristics of Saemangeum Lake using data from the National Water Quality Measurement Network and provide basic information for water quality management. In the water quality parameters of Saemangeum Lake, water temperature and total phosphorous content were correlated, and salt, total nitrogen content, pH, and chemical oxygen demand were significantly correlated. Other parameters showed a low correlation. The spatial principal component analysis of Saemangeum Lake showed the characteristics of its four zones. The mid-to-downstream section of the river affected by freshwater inflow showed a high nutrient salt concentration, and the deep-water section of the drainage gate and the lake affected by seawater showed a high salt concentration. Two types of water qualities were observed in the intermediate water area where river water and outer sea water were mixed: waters with relatively low salt and high chemical oxygen demand, and waters with relatively low salt and high pH concentration. In the principal component analysis by time, the water quality was divided into four groups based on the observation month. Group I occurred during May and June in late spring and early summer, Group II was in early spring (March-April) and late autumn (November-December), Group III was in winter (January-February), and Group IV was in summer (July-October) during high temperatures. The water quality characteristics of Saemangeum Lake were found to be affected by the inflow of the upper Mangyeong and Dongjin rivers, and the seawater through the Garuk and Shinshi gates installed in the Saemangeum Embankment. In order to achieve the target water quality of Saemangeum Lake, it is necessary to establish water quality management measures for Saemangeum Lake along with pollution source management measures in the upper basin.