• Title/Summary/Keyword: 최대균열길이

Search Result 78, Processing Time 0.019 seconds

Relationship between Crack Characteristics and Damage State of Strengthened Beam (보강된 보의 균열특성과 손상상태의 상관관계)

  • 한만엽;김상종
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.805-812
    • /
    • 2002
  • The number of old concrete structure which needs to be strengthened has been increased. The repair and strengthening methods have to be determined based on the current status of the structure. Consequently the estimation method for the damage status of the structure has been desperately needed, but no studies have been tried to use the crack and deflection characteristics to estimate the damage status. In this study, the crack characteristics depending on load level were measured and analysed. The crack characteristics observed from 11 samples were compared with damage status, and load level, The crack characteristics examined in this study include crack number, crack length, crack range, crack interval, maximum crack length, crack area, and average crack length. The deflections were normalized based on yield deflection, and the relationship between the relative deflection and the standardized crack characteristics were compared. Among the crack characteristics, crack interval, crack area, crack range, and maximum crack length, have been showed a close relationship to the relative deflection. Therefore, if such crack characteristics are evaluated, the maximum load applied to the structure is believed to be estimated. if additional parameters such as size of specimen, strength of concrete and steel, and steel ratio are studied, the damage status of structure can be estimated more accurately.

Resistance Curves of Propagating Cracks for Concrete Three-Point Bend Specimens (콘크리트 삼점 휨시험편의 성장하는 균열에 대한 저항곡선)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.568-574
    • /
    • 2001
  • From measured responses of concrete three-point bend tests, the average values of the responses have been calculated. The fracture behavior of continuously propagating concrete crack has been analyzed from the average responses. The experimental parameters of this study were the initial notch sizes of 25.4㎜ and 6.4 ㎜ and the processing times of 2,000 sec. and 20 sec . The different notch sizes were used for the effects of the size of fracture process zone and specimen geometry, and the processing times for those of initial creep. However the load-point displacement rate in this study did not affect the experimental responses seriously. The average loads were calculated from the average external work of a series of tests, and average crack lengths were determined by using strain gages. Before the peak load, the resistance curve could be determined from the size of fracture process zone, but unstable crack propagation of 88㎜ occurred at the load-point displacement of 0.088∼0.154㎜ after the peak load. The average fracture energy density G$\_$F/$\^$ave/ = 115 N/m occurred during the unstable crack propagation. The fracture process zones were fully developed at the crack length of 111㎜, and the sizes of fracture process zone for initial notches of 25.4㎜ and 6.4㎜ were 86㎜ and 105㎜, respectively. Average fracture energy densities of the resistance curves after full development of fracture process zone were 229 N/m for the initial notch of 25.4㎜ and 284 N/m for 6.4㎜. The values were more than twice of G$\_$F/$\^$ave/.

Evaluation of Dynamic Fracture Properties of Concrete (수치해석에 의한 콘크리트 동적 파괴특성의 평가)

  • 연정흠
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.383-390
    • /
    • 1998
  • 0.93m/sec의 평균속도는 변위제어 삼점휨 실험된 콘크리트 보의 하중-변위 측정결과를 선형탄성파괴역학모델과 가상균열모델에 기초한 유한요소법으로 분석하였다. 두 모델 모두 실험결과와 잘 일치하며, 균열성장길이가 약 60∼70㎜가 될 때까지 안전된 균열성장을 보이다 불안정한 균열성장에 의해 파손되었다. 선형탄성파괴역학모델에 의한 수치해석 결과 에너지해방률은 균열성장길이에 비례해서 증가하였으며, 최대값(202N/m)에 이르게 되면 일정한 값을 유지하였다. 가상균열모델에 기초한 수치해석결과 이 연구에 사용된 하중속도와 시험편의 크기에 대해 70㎜의 완전한 파괴진행대가 평성되었으며, 이는 기존의 정적 실험결과에 대한 수치해석 결과보다 상당히 작은 값이었다.

  • PDF

Distributional Characteristics of Microcrack in Tertiary Crystalline Tuff from Northeastern Gyeongsang Basin (경상분지 북동부의 제3기 결정질 응회암에서 발달하는 미세균열의 분포특성)

  • Park, Deok-Won;Lee, Chang-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.315-336
    • /
    • 2009
  • We have studied the orientational characteristics of microcrack frequency, it's length and density in Tertiary crystalline tuff from the northeastern part of the Gyeongsang Basin. 134 sets of microcracks on horizontal surfaces of 3 rock samples from Heunghae-eup were distinguished by enlarged photomicrographs of the thin sections. The variability in patterns among microcrack length-frequency histograms for three rock samples from different altitudes were derived. The pattern of histograms changes progressively from negative exponential form to log-normal form in proportion to altitude. The distribution pattern for rock sample no.1 from lower altitude shows the broad length distribution characterized by higher mean and median, and higher standard deviation. Meanwhile, this distribution pattern corresponds with characteristics of joint length distribution in sedimentary rocks of the lower part of the Gyeongsang Supergroup. The occurrence frequency of shorter microcracks increases toward both NW and NE directions from the $N0{\sim}10^{\circ}W$, with the dominant direction of $N80{\sim}90^{\circ}W$ and $N80{\sim}90^{\circ}E$, respectively. This distribution pattern represents the relative differences in formation timing among microcrack sets and the result of the new initiation of shorter microcracks. Meanwhile, the longest microcracks within $N60{\sim}70^{\circ}W$($L_{max}$:1.18 mm) and $N0{\sim}10^{\circ}W$($L_{max}$:0.80 mm) directions are seen, but this kind of microcracks are very limited in number. Whole domain of the directional angle($\theta$)-frequency(N), length(L) and density($\rho$) chart can be divided into five sections in terms of phases of the distribution of related curves. From the distribution chart, density curve shows five distinct peaks in the WNW-ESE($N70{\sim}80^{\circ}W$), NS~NNE-SSW($N0{\sim}10^{\circ}W$, $N10{\sim}20^{\circ}E$), ENE-WSW($N50{\sim}60^{\circ}E$), and nearly EW($N80{\sim}90^{\circ}E$) directions, respectively. Especially, main directions of faults correspond with the directional angle showing high density. Consequently, these distribution patterns of density curve reflect the representative maximum principal stress orientations suggested in previous studies.

Dynamic Fracture Behaviors of Concrete Three-Point Bend Specimens (콘크리트 삼점휨 시험편의 동적 파괴거동)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.689-697
    • /
    • 2002
  • The dynamic loads and load-point displacements of concrete three-point bend (TPB) specimens had been measured. The average crack velocities measured with strain gages were 0.16 ㎜/sec ∼ 66 m/sec. The fracture energy for crack extension was determined from the difference of the kinetic energy for the load-point velocity and the strain energy without permanent deformation from the measure external work. For all crack velocities, there were micro-cracking for 23 ㎜ crack extension, stable cracking for 61 ㎜ crack extension at the maximum strain energy, and then unstable cracking. The unstable crack extension was arrested at 80 ㎜ crack extension except the tests of 66 m/sec crack velocity. The tests less than 13 ㎜/sec crack velocity and faster than 1.9 m/sec showed static and dynamic fracture behaviors, respectively. In spite of much difference of the load and load-point displacement relations for the crack velocities, the crack velocities of dynamic tests did not affect on fracture energy rate during the stable crack extension due to the reciprocal action of kinetic force, crack extension and strain energy. During stable crack extension, the maximum fracture resistances of the dynamic tests was 147% larger than that of the static tests.

Characteristic of Microcracks with Mixing Proportional Properties of Concrete (미세균열이 콘크리트의 염소이온 침투에 미치는 영향 III; 배합조건 특성에 따른 미세균열의 특성)

  • Yoon, In-Seok;Kim, Young-Geun;Park, Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.469-475
    • /
    • 2008
  • It is obvious that chloride penetration through cracks can threaten the durability of concrete substantially, according to the previous studies of author. It was proposed that crack depth corrseponded with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It is now necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. The purpose of this study is examining the effect of mix proportional features of concrete such as coarse aggregate, high strengtherize of concrete and reinforcement of steel fiber on chloride penetration through cracks. Although small size of coarse aggregate can lead to many microcracks in concrete, the cracks should not impact on chloride penetration directly. On the contrary, chloride should penetrate through cracks easily in concrete with a large size of coarse aggregate because mixrocracks are connected to each other. Second, high strength concrete has an excellent performance to resist with chloride penetration. However, for cracked high strength concrete, its performance is reduced upto the level of ordinary concrete. Finally, steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly.

Fracture Behavior of Concrete and Equivalent Crack Length Theory (콘크리트의 파괴거동규명과 등가균열(等價龜裂)길이 이론확립(理論確立)에 관한 연구)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.59-68
    • /
    • 1987
  • Several series of fracture tests were conducted to explore the fracture characteristics and to determine the fracture energy of concrete. A stable three-point bend test was employed to generate the load-deflection curves. The fracture energy may then be calculated from the area under the complete load-deflection curve. The initial notch-to-beam depth ratio (${\alpha}_0$/H) was varied from zero to 0.6. The prediction formula for the fracture energy of concrete is also derived and is found to depend on the tensile strength and aggregate size. The proposed fracture energy formula can be used for the fracture analysis of concrete structures. The present study also devises an equivalent crack length concept to predict the maximum failure loads of concrete beams. A simple formula for the equivalent crack length is proposed.

  • PDF

High Temperature and Fatigue Strength of crack-healed Mullite/Silicon Carbide Ceramics (균열 치유된 Mullite/SiC 세라믹스의 고온강도와 피로강도)

  • Ando, K.;Chu, M.C.;Tsuji, K.;Sato, S.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.88-95
    • /
    • 2002
  • 본 연구에서는 균열 치유 거동을 가지는 소결된 Mullite/SiC의 모재, 열처리재, 균열재, 치유 균열재의 기계적 특성이 논의되었다. 반타원형 균열의 치수는 $100{\mu}m$$200{\mu}m$이다. 얻어진 결과는 다음과 같다. (a) Mullite/SiC 복합 세라믹스는 균열 치유 능력이 있었다. (b) 최적의 균열 치유 열처리 조건은 $1300^{\circ}C$, 1시간이었다. (c) 치유 가능한 최대 균열 길이는 직경 $100{\mu}m$의 반타원 균열이다. (d) 균열 치유부는 $1200^{\circ}C$이상에서 충분한 강도를 가졌고, 대부분의 시험편은 균열 치유부 이외의 영역에서 파단 하였다. (e) 공기중에서 예열처리는 본 재료의 피로강도 향상에 유용하였다.

  • PDF

Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam (U-노치 및 균열을 갖는 보의 응력집중계수 및 응력확대계수)

  • Seo, Bo Seong;Lee, Kwang Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.513-523
    • /
    • 2016
  • The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and phtoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1~2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used. where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length a(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.

An Experimental Study on Structural Characteristics of Reinforced Concrete Beams with the Perforative Opening (철근콘크리트 개방형 유공보의 구조적 특성에대한 실험적 연구)

  • 구해식
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.225-232
    • /
    • 1997
  • 철근콘크리트 유공보에 있어서 기존 유공보의 연구는 유공위치를 보춤의 중앙에 위치하여 연구하였으나 철근코크리트 보의 역학적 특성활용과 시공상의 편의성을 위해 사각형 유공의 위치를 보춤 하단에 설치하여 개방형 유공보로 변형하였다. 본 연구에서는 사각형 유공보에 대한 유공크기의 세로길이를 보춤의 0.3배로 하고 가로길이를 세로길의의 1~3배로 변화시켜 보강 및 무보강 상태의 사각형 유공보와 이의 사각형 유공하부 콘크리트를 제외시킨 개방형 유공보에 있어서 총 10개의 시험체를 대상으로 하는 실험을 실시하여 시험체의 최대내력, 유공주위에서의 전단균열과 시험체의 휨인장균열, 주요위치의 변위조사, 주근 및 유공주위의 콘크리트와 보강철근의 변형도조사, 시험체의균열을 조사하여 상호변화를 비교.분석하였다. 이 연구결과로부터 개방형유공보의 유공주위 응력변형상태, 파괴메카니즘, 적절한 개방형 유공크기,설계시 고려사항을 제시하여 차후의 개방형 유공보의 계속적인 연구에 기여하고자 한다.