• Title/Summary/Keyword: 최단경로 탐색

Search Result 184, Processing Time 0.022 seconds

A Study on A* Algorithm Applying Reversed Direction Method for High Accuracy of the Shortest Path Searching (A* 알고리즘의 최단경로 탐색 정확도 향상을 위한 역방향 적용방법에 관한 연구)

  • Ryu, Yeong-Geun;Park, Yongjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • The studies on the shortest path algorithms based on Dijkstra algorithm has been done continuously to decrease the time for searching. $A^*$ algorithm is the most represented one. Although fast searching speed is the major point of $A^*$ algorithm, there are high rates of failing in search of the shortest path, because of complex and irregular networks. The failure of the search means that it either did not find the target node, or found the shortest path, witch is not true. This study proposed $A^*$ algorithm applying method that can reduce searching failure rates, preferentially organizing the relations between the starting node and the targeting node, and appling it in reverse according to the organized path. This proposed method may not build exactly the shortest path, but the entire failure in search of th path would not occur. Following the developed algorithm tested in a real complex networks, it revealed that this algorithm increases the amount of time than the usual $A^*$ algorithm, but the accuracy rates of the shortest paths built is very high.

Analysis on ACO Algorithm for Searching Shortest Path (최단경로 탐색을 위한 ACO 알고리즘의 비교 분석)

  • Choi, Kyung-Mi;Park, Young-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.1354-1356
    • /
    • 2012
  • 최근 ITS(Intelligent Transportation Systems)의 개발과 함께 차량용 내비게이션의 사용이 급증하면서 경로탐색의 중요성이 더욱 가속화되고 있다. 현재 차량용 내비게이션은 멀티미디어 및 정보통신 기술의 결합과 함께 다양한 기능 및 정보를 사용자에게 제공하고 있으며 이러한 기능과 정보를 사용해서 목적지점까지의 최단경로를 탐색하는 것이 내비게이션 시스템의 핵심기능이다. 이러한 경로탐색 알고리즘은 교통시스템, 통신 네트워크, 운송 시스템은 물론 이동 로봇의 경로 설정 등 다양한 분야에 사용되고 있다. 개미 집단 최적화(Ant Colony Optimization, ACO) 알고리즘은 메타 휴리스틱 탐색 방법으로 그리디 탐색(Greedy Search)뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 순환 판매원 문제(Traveling Salesman Problem, TSP)를 풀기 위해 처음으로 제안되었다. 본 논문에서는 개미 집단 최적화(ACO) 알고리즘이 기존의 경로 탐색 알고리즘으로 알려진 Dijkstra 보다 최단경로 탐색에 있어서 더 적합한 알고리즘이라는 것을 설명하고자 한다.

Development of a Shortest Path Searching Algorithm Using Minimum Expected Weights (최소 기대 부하량을 이용한 최단경로 탐색 알고리즘 개발)

  • Ryu, Yeong-Geun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 2013
  • This paper developed a new shortest path searching algorithm based on Dijkstra's algorithm and $A^*$ algorithm, so it guarantees to find a shortest path in efficient manner. In this developed algorithm, minimum expected weights implies the value that straight line distance from a visiting node to the target node multiplied by minimum link unit, and this value can be the lowest weights between the two nodes. In behalf of the minimum expected weights, at each traversal step, developed algorithm in this paper is able to decide visiting a new node or retreating to the previously visited node, and results are guaranteed. Newly developed algorithm was tested in a real traffic network and found that the searching time of the algorithm was not as fast as other $A^*$ algorithms, however, it perfectly found a minimum path in any case. Therefore, this developed algorithm will be effective for the domain of searching in a large network such as RGV which operates in wide area.

Efficient Shortest Path Techniques on a Summarized Graph based on the Relationships (관계기반 요약그래프에서 효율적인 최단경로 탐색기법)

  • Kim, Hyunwook;Seo, HoJin;Lee, Young-Koo
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.710-718
    • /
    • 2017
  • As graphs are becoming increasingly large, the costs for storing and managing data are increasing continuously. Shortest path discovery over a large graph requires long running time due to frequent disk I/Os and high complexity of the graph data. Recently, graph summarization techniques have been studied, which reduce the size of graph data and disk I/Os by representing highly dense subgraphs as a single super-node. Decompressing should be minimized for efficient shortest path discovery over the summarized graph. In this paper, we analyze the decompression performance of a summarized graph and propose an approximate technique that discovers the shortest path quickly with a minimum error ratio. We also propose an exact technique that efficiently discovered the shortest path by exploiting an index built on paths containing super-nodes. In our experiments, we showed that the proposed technique based on the summarized graph can reduce the running time by up to 70% compared with the existing techniques performed on the original graph.

A Design of Optimal Path Search Algorithm using Information of Orientation (방향성 정보를 이용한 최적 경로 탐색 알고리즘의 설계)

  • Kim Jin-Deog;Lee Hyun-Seop;Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.454-461
    • /
    • 2005
  • Car navigation system which is killer application fuses map management techniques into CPS techniques. Even if the existing navigation systems are designed for the shortest path, they are not able to cope efficiently with the change of the traffic flow and the bottleneck point of road. Therefore, it is necessary to find out shortest path algorithm based on time instead of distance which takes traffic information into consideration. In this paper, we propose a optimal path search algorithm based on the traffic information. More precisely. we introduce the system architecture for finding out optimal paths, and the limitations of the existing shortest path search algorithm are also analyzed. And then, we propose a new algorithm for finding out optimal path to make good use of the orientation of the collected traffic information.

Development of a Global Searching Shortest Path Algorithm by Genetic Algorithm (유전 알고리듬을 이용한 전역탐색 최단경로 알고리듬개발)

  • 김현명;임용택
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.163-178
    • /
    • 1999
  • Conventional shortest path searching a1gorithms are based on the partial searching method such as Dijsktra, Moore etc. The a1gorithms are effective to find a shortest path in mini-modal condition of a network. On the other hand, in multi-modal case they do not find a shortest path or calculate a shortest cost without network expansion. To copy with the problem, called Searching Area Problem (SAP), a global searching method is developed in this paper with Genetic Algorithm. From the results of two examples, we found that the a1gorithm is useful to solving SAP without network expansion.

  • PDF

An Heuristic Shortest Path Finding Method in the Online Social Network (온라인 소셜 네트워크에서의 휴리스틱 최단경로 탐색 방법)

  • Sohn, Jong-Soo;Cho, Soo-Whan;Chung, In-Jeong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.384-386
    • /
    • 2012
  • 최근, 온라인 소셜 네트워크 서비스의 사용자가 크게 늘어나면서 온라인 사용자들의 특성을 연구하기위한 방안으로 소셜 네트워크 분석이 주목받고 있다. 그러나 대부분의 소셜 네트워크 분석 방법은 두 노드 사이의 최단경로를 계산해야하므로 계산 시간이 오래 걸리는 단점이 있다. 본 논문에서는 휴리스틱 탐색방법의 하나인 최상우선 탐색 방법을 온라인 소셜 네트워크에 적합하도록 수정한 최단경로 탐색 방법을 제안한다. 제안한 방법은 그래프에서 아크의 개수를 평가 값으로 사용하는 휴리스틱 함수를 사용하며 탐색의 효율성을 위하여 경사트리를 제거한 후 경로를 탐색한다. 그리고 검증을 위하여 약 16만 사용자로 구성된 실제 온라인 소셜 네트워크를 수집하여 너비우선 탐색 방법과 비교 실험을 하였다. 실험 결과, 본 논문에서 제안한 방법이 너비우선 탐색 방법에 비해 정확도는 80% 정도로 다소 떨어지지만 계산 속도가 약 7.4배 향상됨을 확인하였다. 본 논문에서 제안한 방법은 소셜 네트워크 분석의 시간을 향상시켜 여러 분야에서 사회 현상 및 동향을 다양하게 분석하는데 유용하다.

Multiple Path-Finding Algorithm in the Centralized Traffic Information System (중앙집중형 도로교통정보시스템에서 다중경로탐색 알고리즘)

  • 김태진;한민흥
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.183-194
    • /
    • 2001
  • The centralized traffic information system is to gather and analyze real-time traffic information, to receive traffic information request from user, and to send user processed traffic information such as a path finding. Position information, result of destination search, and other information. In the centralized traffic information system, a server received path-finding requests from many clients and must process clients requests in time. The algorithm of multiple path-finding is needed for a server to process clients request, effectively in time. For this reason, this paper presents a heuristic algorithm that decreases time to compute path-finding requests. This heuristic algorithm uses results of the neighbor nodes shortest path-finding that are computed periodically. Path-finding results of this multiple path finding algorithm to use results of neighbor nodes shortest path-finding are the same as a real optimal path in many cases, and are a little different from results of a real optimal path in non-optimal path. This algorithm is efficiently applied to the general topology and the hierarchical topology such as traffic network. The computation time of a path-finding request that uses results of a neighbor nodes shortest path-finding is 50 times faster than other algorithms such as one-to-one label-setting and label-correcting algorithms. Especially in non-optimal path, the average error rate is under 0.1 percent.

  • PDF

Development of Shortest Path Searching Network Reduction Algorithm (최단경로 탐색영역 축소 알고리즘 개발)

  • Ryu, Yeong-Geun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.12-21
    • /
    • 2013
  • This study developed searching network reduction algorithm for reduce shortest path searching time. Developed algorithm is searching nodes that have the including possibility of less weights path than temporal path that consists minimum number of nodes and minimum sum of the straight line distances. The node that has the including possibility of shortest path is the node that the sum of straight line distance from start node and straight line distance to target node is less than the value that temporary path's weights divided by minimum weights units. If searching network reconstitutes only these nodes, the time of shortest path searching will be reduced. This developed algorithm has much effectiveness that start node and target node is close in large network.

A Design of Traverse and Representation Method of Maze for Shortest Path Search with Robots (로봇의 최단경로탐색을 위한 미로의 순회 및 표현방법 설계)

  • Hong, Ki-Cheon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2010.08a
    • /
    • pp.227-233
    • /
    • 2010
  • Graph is applied to GIS, Network, AI and so on. We use graph concept in our daily life unconsciously. So this paper describe how graph concept is used when robot searches shortest path between two distinct vertices. It is performed in real world. For this, it consists of three step; maze traverse, graph generation, and shortest path search. Maze traverse steps is that robot navigates maze. It is most difficult step. Graph generation step is to represent structural information into graph. Shortest path search step is to that robot move between two vertices. It is not implemented yet. So we introduce process in design level.

  • PDF