• Title/Summary/Keyword: 총질소 제거

Search Result 85, Processing Time 0.027 seconds

Comparison of efficiency in Mainstream ANAMMOX process for ratio of ammonium to nitrite (암모니아성 질소 대비 아질산성 질소 비율에 따른 Mainstream A NAMMOX 공정 효율 비교)

  • Gil, Kyung Ik;Lee, Da Won;Lee, Ji Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.421-421
    • /
    • 2021
  • 도시화, 산업화로 인해 하수처리장 유입하수 내 질소 농도가 증가하면서 그에 따른 부영양화 발생, 수생태계에 독성을 미치는 등의 악영향 또한 증가하게 되었다. 하수 내 고농도 질소를 처리하기 위해 1990년 초 연구가 시작되어 현재 보편적으로 사용되고 있는 생물학적 질소 제거 공정은 산소공급과 외부탄소원 보충 과정에서 상당한 비용이 소요된다. 이와 같은 문제점이 대두됨에 따라 고도의 질소 제거 공정이 요구되면서, 경제적으로 개선이 이루어져 기존의 질산화·탈질 공정보다 효율적인 혐기성 암모늄 산화 공정(ANaerobic AMMonium OXidation, ANAMMOX)이 제안되었다. ANAMMOX 공정은 혐기성 조건 아래 전자공여체와 전자수용체로써 암모니아성 질소와 아질산성 질소를 이용해 질소가스 형태로 질소를 제거하는 공정이다. 질산화·탈질 공정과 비교했을 때, 폭기과정에서의 산소요구량 감소, 외부탄소원 불필요, 질소 제거 과정 단축 등의 장점을 가진다. 본 연구는 수처리공정에서의 ANAMMOX 공정의 적용 가능성을 확인하고, 암모니아성 질소대비 아질산성 질소 비율에 따른 Mainstream ANAMMOX 공정의 효율 비교를 통해 공정의 안정성과 높은 제거효율을 확보할 수 있는 NH4+ 대비 NO2- 비율을 도출하는데 목적이 있다. 실험실 규모의 Mainstream ANAMMOX 반응조에 적용한 비율은 선행연구를 비롯한 화학양론식에서 제시된 비율을 바탕으로 산정하였다. 1.00부터 1.30의 전체적인 비율을 Initial과 Advanced 2개의 구간으로 나누어 운전한 결과, 각 구간의 NH4+ 제거효율은 각각 58~86%, 94~99%였다. NH4+ 대비 NO2- 비율이 증가함에 따라 공정의 안정성이 확보되고, NH4+ 및 총질소(TN) 제거효율이 증가하는 경향이 나타났다. 본 연구의 결과는 수처리공정에서의 안정적인 ANAMMOX 공정 적용을 유도하고, ANAMMOX 공정의 성능개선을 도모하는 연구의 기초로 활용될 수 있다.

  • PDF

Removal of Nitrogen and Phosphorus from Municipal Wastewater by a Pilot-scale BNR Process (파이롯트 규모의 BNR 공법에 의한 도시하수의 질소 및 인 제거)

  • Kim, Young-Chur
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.589-599
    • /
    • 2007
  • This study was conducted to investigated the removal efficiency of BOD and nutrient for the treatment of low strength municipal wastewater by a biological nutrient removal system. In this experiment, the effect of operating parameter including HRT of 7.0hr, BOD/TN ratios of 2.62~4.08, internal recycle of 50~300%, and return sludge of 50~100%, were studied during winter season. Efficiencies of organic matter and T-P removal and denitrification were not significantly affected by the change of temperature in winter season. However, the specific nitrification rate and nitrification efficiency decreased at low temperature. Besides, denitrification efficiencies increased with increasing BOD/TN ratios. It was also found that the internal recycle and return sludge ratio below 50% is required for the effective denitrification of low strength municipal wastewater. With operating mode 4 of the optimum, the effluent BOD, T-N and T-P concentration were obtained to average 5.8, 14.6, and 0.84 mg/L, respectively. The temperature-activity coefficient (${\theta}$) of specific nitrification rate, specific denitrification rate and specific phosphorus uptake rate were obtained 1.044, 1.017, 1.028, respectively.

A Basic Study on the Simultaneous Removal of Ammonium and Nitrate using Zeocarbon (제오카본을 이용한 암모니아성 질소와 질산성 질소 동시 제거에 관한 기초 연구)

  • Kim, Seo-A;Hong, Ji-Sook;Suh, Jeong-Kwon;Kang, Ho;Lee, Jung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.109-114
    • /
    • 2005
  • The objective of this study is to investigate the possibility for water treatment, and to evaluate the efficiency of simultaneous removal of ammonium and nitrate by the surface modified zeocarbon. The surface modification was done by acid treatment using HCl. As a result of modification, strength of the modified zeocarbon was enhanced about 62% higher than that of in original one. This indicates that the modified zeocarbon was suitable for the application of water treatment. In the removal experiments of ammonium and nitrate, the removal efficiency showed about two times higher in the modified zeocarbon and the dependences of pH and temperature were found to be minimized. This indicates that the modified zeocarbon was effective for simultaneous removal of ammonium and nitrate from aqueous solution. Consequently, our results could be used as basic data to design of one-stage ammonium/nitrate simultaneous removal system.

Evaluating the Removal Efficiency of Organic Compounds and Nitrogen Depending on Loading Rate in Wastewater Treatment from Fisheries Processing Plant Using an Entrapped Mixed Microbial Cell Technique (미생물 강제포획기술을 이용한 수산물 가공공장 폐수처리에서 부하율에 따른 유기물 및 질소의 제거 효율성 평가)

  • Jeong Byung-Cheol;Chang Soo-Hyun;Jeong Byung-Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.14-20
    • /
    • 2006
  • In this study, the feasibility of simultaneous removal of organic materials and nitrogen in the waste-water from fisheries processing plant was evaluated using entrapped mixed microbial cell technique(EMMC) process. The experiment was performed using activated sludge from municipal sewage treatment plant which was immobilized with gel matrix by cellulose triacetate. It was found that the stable operation at the treatment system which is composed of anoxic and oxic tank, was possible when the organic and nitrogen loading rates were increased stepwise. The organic and nitrogen loading rates were applied from 0.65 to $1.72kgCOD/m^3/d$ and from 0.119 to $0.317kgT-N/m^3$ with four steps, respectively. The maximum nitrogen loading rate which could satisfy the regulated effluent standard of nitrogen concentration, was $0.3kgT-N/m^3/d$. The removal efficiency of total nitrogen was decreased apparently as increasing nitrogen loading rates, whereas the removal efficiency of ammonium nitrogen was effective at the all tested nitrogen loading rates. Therefore, it was concluded that nitrification was efficient at the system. Nitrate removal efficiency ranged from 98.62% to 99.51%, whereas the nitrification efficiency at the oxic tank ranged 94.0% to 96.9% at the tested loading rates. The removal efficiencies of chemical oxygen demand(COD) and those of total nitrogen at the entire system ranged from 94.2% to 96.6% and 73.4% to 83.4%, respectively.

  • PDF

A Study on Performance Evaluation for the Bio-retention Non-point Source Pollution Treatment System (생물 저류 방법 적용을 통한 비점오염원 처리시설의 성능평가에 관한 연구)

  • Lee, Jang-Soo;Park, Yeon-Soo;Cho, Wook-Sang
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This study was purposed and performed to evaluate removal efficiency of non-point source pollution in the process and system based on bio-retention design criteria regulated by EPA. Basic Column Reactors (BCR) were prepared for optimal determinations of inflow rate of first rainfall runoff and composition and ratio of soil layers. Removal efficiencies of non-point source pollution from synthetic runoff and real first rainfall runoff, directly sampled from motor way and parking lot, were analyzed, respectively. Removal efficiency of SS, BOD, COD, T-N, and T-P were all shown to be more than 80%.

Characteristics of Nutrient Removal and Membrane Fouling in a Membrane Bioreactor using Food Waste as an Additional Carbon Source (음식폐기물 응축수를 보조탄소원으로 이용하는 막 결합 생물 응조에서의 질소, 인 제거와 막 오염 특성)

  • Ahn, Young-Tae;Youn, Jong-Ho;Chae, So-Ryong;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.519-524
    • /
    • 2005
  • Due to the low C/N ratio of domestic wastewater characteristic, addition of external carbon source for the effective N and P removal is necessary. High organic content of food waste can be used for the external carbon source in biological nutrient removal processes, The applicability of condensate of food waste (CFW), which is produced during the high-rate fermentation process, was examined in membrane bioreactor for the nutrient removal. Under the various operating conditions, nutrient removal efficiencies and membrane fouling characteristics were evaluated using synthetic wastewater. From nitrate utilization rate (NUR) test, denitrification rate was 0.19 g $NO_3-N/g$ VSS/day. With the addition of CFW increased, average removal efficiencies of T-N and T-P could be increased up to 64% and 41%, respectively. Also the optimal retention time was 3 hr/5 hr for anoxic/aerobic reactor. When applied to real sewage, membrane fouling resistance was increased up to 60%, which could be reduced from $10.4{\times}10^{12}m^{-1}$ to $5.9{\times}10^{12}m^{-1}$ with the control of influent suspended solid concentration. In summary, it was suggested that CFW could be used as an economical and effective carbon source for membrane assisted biological N and P removal.

Growth of Yeasts in Alcohol Distiller′s Waste of Dried Sweet Potato for Single-cell Protein Production and BOD Reduction (절간고구마원료 주정폐액을 이용한 단세포단백질의 생산 및 폐액의 BOD제거)

  • 이형춘;구영조;민병용;이홍근
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.95-100
    • /
    • 1982
  • Torulopsis candida FRI YA-15, a selected yeast, was cultivated in alcohol distiller's waste-filtrate of dried sweet potato for microbial protein production and BOD reduction. The General composition of waste-filterate was BOD$_{5}$ 15700 ppm, COD 36800 ppm, reducing sugar 3300 ppm, total nitrogen 910 ppm, total solids 51800 ppm and ash 390 ppm. The pH of waste was 3.85. The yield to the medium of T. candida cultivated in shake-flask at $25^{\circ}C$ for 48 hrs was 3.38g/$\ell$ and effectiveness in reducing BOD$_{5}$ and COD of waste was 38.9% and 31.8%, respectively. In batch cultivation using 3 $\ell$-jar fermenter, maximum yield to the medium reached 3.2g/$\ell$after 28 hrs cultivation under the condition of temperature 35$^{\circ}C$, initial pH 4.0, aeration rate 2vvm, agitation speed 100rpm. Dry yeast was composed of crude protein 47.98% and ash 5.23%.

  • PDF

Experimental study of Nutrient Removal by Endogeneous Nitrate Respiration (ENR) Mechanism in domestic wastewater (질산성질소의 내생탈질기작을 이용한 하수내 영양소 제거에 관한 실험적 연구)

  • Park, Myung-Gyun;Ahn, Won-Sik;Lee, Eui-Sin;Heo, Yong-Rok;Park, Chong-Bok
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.77-83
    • /
    • 2002
  • The purpose of this study is to develop the efficient nutrient removal process and to verify operation and design parameters in domestic sewage. Endogenous nitrate respiration (ENR) was used for denitrification of nitrate in return sludge without additional organic carbon source. ENR reactor before the anaerobic tank enable to reduce nitrate below 3 mg/L and increase phosphate release at anaerobic reaction. Primary effluent during pilot scale plant were shown as TCOD/TP ratio of 40~60 and TCOD/TKN ratio of 5~7. Effluent concentrations were 10 to 12mg/L as TN and 1mg/L as TP respectively. In lab scale experiments endogenous denitrification rate of ENR reactor ranges from 0.042 to $0.057gNO_3-N/gMv.d.$ $SP_{rel}/SCOD_{rm}$ was shown as from 0.13 to 0.17 in anaerobic reaction. These kinetic parameters are expected to be available for BNR(Biological Nutrient Removal) plant design and ENR reaction is available for nutrient removal in low strength wastewater.

  • PDF

Basic study and patent analysis of electrochemical denitrification from industrial wastewater (산업폐수(産業廢水)로부터 전해처리(電解處理)에 의한 탈질(脫窒) 연구(硏究) 및 특허(特許) 분석(分析))

  • Lee, Churl-Kyoung
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.52-60
    • /
    • 2007
  • Denitrification from aqueous solution was investigated through patent analysis and electrochemical denitrification experiment. Among several candidates, biological treatment and oxidation/reduction method are mainly discussed. Recently, patent pending concerning to electrochemical treatment is increasing. Based on basic electrochemical study, total nitrogen was removed up 47% by 1-hour galvanostatic electrolysis with Fe cathode and Pt anode. More applicable technique to industry could be mentioned combination of two or more technologies suitable to waste water characteristics. In the case of small and concentrate effluent, combination of chemical and electrochemical treatment would be recommendable because nitrate could be easily converted to nitrite by chemical treatment, and in that case denitrification by electrolysis becomes more efficient and metal ions from chemical treatment can be recovered during electrolysis.

A Study on a Small-scale Wastewater Treatment System Using MBR and IPNR (MBR과 IPNR을 이용한 소규모 하수처리 시스템에 관한 연구)

  • Kim, Young-Hee;Jo, Eun-Young;Yeo, In-Seol;Park, Seung-Min;Park, Chan-Gyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • In the purpose of this study, we investigate the characteristics of the pilot-scale wastewater treatment system applied to BAF, MBR and IPNR as examining the removal efficiency of organic pollutants and operating factors in small decentralized wastewater treatment systems, and operating factors. For long-term operation period of more than nine months, pilot-scale plant operating results appeared very stable. This results were the removal efficiency of BOD was 80.3% above and removal efficiency of COD with an average of about 91.0%, satisfied the final effluent water quality standards. TN in the final effluents was the average concentration of 7.9 mg/L, was satisfactory water quality standards 10 mg/L of TN.