• Title/Summary/Keyword: 초음파 전파 영상화

Search Result 12, Processing Time 0.021 seconds

Transducer Combination for High-Quality Ultrasound Tomography Based on Speed of Sound Imaging (속도 분포 기반 단층촬영을 위한 최적의 트랜스듀서의 조합)

  • Kim, Young Hun;Park, Kwan Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • The type of ultrasound transducer used influences the quality of a reconstructed ultrasound image. This study analyzed the effect of transducer type on ultrasound computed tomography (UCT) image quality. The UCT was modeled in an ultrasound simulator by using a 5 cm anatomy model and a ring-shape 5 MHz 128 transducer array, which considered attenuation, refraction, and reflection. Speed-of-sound images were reconstructed by the Radon transform as the UCT image modality. Acoustic impedance images were also reconstructed by the delay-and-sum (DAS) method, which considered the speed of sound information. To determine the optimal combination of transducers in observation, point-source, flat, and focused transducers were tested in combination as trasmitters and receivers; UCT images were constructed from each combination. The combination of point-source/flat transducer as transmitting and receiving devices presented the best reconstructed image quality. In UCT implementation, the combination of a flat transducer for transmitting and a point transducer for receiving permitted acceptable image quality.

Depth Sizing of Notch Fatigue Crack Using Diffracted Ultrasonic Wave (회절초음파를 이용한 노치 피로균열의 균열깊이 평가)

  • Jin, Mei-Ling;Lee, Tae-Hun;Park, Byung-Jun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.405-414
    • /
    • 2009
  • This paper proposed a methodology based on ultrasonic diffraction technique to inspect the depth of a crack initiated from a notch of CT specimen by fatigue test, and its usefulness was verified by experiments. Especially, in order to identify accurately the diffractive waves from the crack tip in the situation where there are extra diffractive elements such as a notch, we have tried imaging by transducer scan and analyzed the propagation path of diffracted wave. Two specimens with and without a crack were experimented. Higher frequency and larger refractive angle of transducer showed a tendency to decrease the error in the measurements, and the measured crack depth showed an error less than 0.38 mm in case of 4 MHz $60^{\circ}-60^{\circ}$. The proposed methodology is applicable to weak diffractive sources, and so that it would be useful to inspect micro cracks and for their depth sizing.