DOI QR코드

DOI QR Code

Transducer Combination for High-Quality Ultrasound Tomography Based on Speed of Sound Imaging

속도 분포 기반 단층촬영을 위한 최적의 트랜스듀서의 조합

  • 김영훈 (한양대학교 기계공학부) ;
  • 박관규 (한양대학교 기계공학부)
  • Received : 2015.10.23
  • Accepted : 2016.02.18
  • Published : 2016.02.28

Abstract

The type of ultrasound transducer used influences the quality of a reconstructed ultrasound image. This study analyzed the effect of transducer type on ultrasound computed tomography (UCT) image quality. The UCT was modeled in an ultrasound simulator by using a 5 cm anatomy model and a ring-shape 5 MHz 128 transducer array, which considered attenuation, refraction, and reflection. Speed-of-sound images were reconstructed by the Radon transform as the UCT image modality. Acoustic impedance images were also reconstructed by the delay-and-sum (DAS) method, which considered the speed of sound information. To determine the optimal combination of transducers in observation, point-source, flat, and focused transducers were tested in combination as trasmitters and receivers; UCT images were constructed from each combination. The combination of point-source/flat transducer as transmitting and receiving devices presented the best reconstructed image quality. In UCT implementation, the combination of a flat transducer for transmitting and a point transducer for receiving permitted acceptable image quality.

본 논문은 초음파를 이용한 단층촬영(ultrasound computed tomography, UCT)을 위해 사용되는 영상 복원 방식에서 실제 사용되는 초음파 트랜스듀서의 조합에 따른 영항을 다루었다. 촬영 대상의 속도 분포를 구하기 위해서 라돈 변환(radon transform)을 사용하였으며, 음향 임피던스의 영상화를 위하여, 시간지연(delay and sum)방식을 사용하였다. 음향 임피던스 영상의 경우 속도 분포 영상에 의해 보정하여 더 정확한 영상을 복원하였다. 매질의 특성에 따른 감쇠, 굴절 및 반사를 고려한 초음파 시뮬레이터로 128개의 환형 트랜스듀서 어레이를 구현하였으며, 5 MHz의 중심주파수로, 5 cm의 인체조직 영상을 구현하였다. 실제 구현을 위한 최적의 트랜스듀서 조합을 찾기 위해, 점 진원(point source), 평면 트랜스듀서(flat transducer), 집속 트랜스듀서(focused transducer)를 이용해서 속도 분포에 대한 영상과 음향 임피던스 영상을 구현하여 비교하였다. 또한 시뮬레이션 상에서는 송신 및 수신 트랜스듀서가 모두 점 트랜스듀서인 경우가 가장 좋은 결과를 보여주었으나, 실제 구현을 고려하면 송신은 평면 트랜스듀서가 수신은 점 트랜스듀서로 하는 조합이 가장 현실적으로 좋은 결과를 보여준다.

Keywords

References

  1. G. H. Glover and J. C. Sharp, "Reconstruction of ultrasound propagation speed distributions in soft tissue: time-of-flight tomography," IEEE Transactions on Sonics and Ultrasonics, Vol. SU-24, No. 4 (1977)
  2. J. Nebeker and T. R. Nelson, "Breast sound speed tomography from B-mode data," IEEE International Ultrasonics Symposium Proceedings, pp. 2344-2347 (2010)
  3. I. Peterlik, R. Jirik, N. Ruiter and J. Jan, "Regularized image reconstruction for ultrasound attenuation transmission tomography," Radioengineering, Vol. 17, No. 2, pp. 125-132 (2008)
  4. H. I. Schlaberg, M. Yang and B. S. Hoyle, "Ultrasound reflection tomography for industrial processes," Ultrasonics International, Vol. 36, Issues 1-5, pp. 297-303 (1998) https://doi.org/10.1016/S0041-624X(97)00053-X
  5. F. Huang, A. Maurudis, J. Gamelin, A. Aguirre, D. Castillo, P. Guo1 and Q. Zhu, "A fast photoacoustic imaging system based on a curved ultrasound transducer array," Bioengineering Conference, IEEE 33rd Annual Northeast, pp. 47-48 (2007)
  6. C. Li, N. Duric, P. Littrup and L. Huang, "In vivo breast sound-speed imaging with ultrasound tomography," Ultrasound in Med. & Biol., Vol. 35, No. 10, pp. 1615-1628 (2009) https://doi.org/10.1016/j.ultrasmedbio.2009.05.011
  7. A. C. Kak and M. Slaney, "Principles of computerized tomographic imaging," The Institute of Electrical and Electronics Engineers, Inc., New York, pp. 49-112 (1988)
  8. J.-F. Synnevag, "Adaptive beamforming for medical ultrasound imaging," Faculty of Mathematics and Natural Sciences, University of Oslo Nr. 835, pp. 4-18 (2008)
  9. Z. Sharif-Khodaei and M. H. Aliabadi, "Assessment of delay-and-sum algorithms for damage detection in aluminium and composite plates," Smart Materials and Structures, Vol. 23, No. 7, 075007 (2014) https://doi.org/10.1088/0964-1726/23/7/075007
  10. B. E. Treeby and B. T. Cox, "k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields," J. Biomed. Opt., Vol. 15, No. 2, p. 021314 (2010) https://doi.org/10.1117/1.3360308
  11. B. E. Treeby, J. Jaros, A. P. Rendell and B. T. Cox, "Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method," J. Acoust. Soc. Am., Vol. 131, No. 6, pp. 4324-4336 (2012) https://doi.org/10.1121/1.4712021
  12. L. A. Shepp and B. F. Logan, "The Fourier reconstruction of a head section," IEEE Transactions on Nuclear Science, Vol. NS-21 (1974)