• Title/Summary/Keyword: 초음파 온도변화

Search Result 153, Processing Time 0.036 seconds

Influence of Ultrasonification on Extraction Yield and Chemical Property of Green Tea Infusion (초음파 처리가 녹차 침출액의 추출 수율 및 화학적 특성에 미치는 영향)

  • Kim, Byung-Chul;Kang, Sung-Won;Chung, Chang-Ho;Heo, Ho-Jin;Lee, Seung-Cheol;Cho, Sung-Hwan;Choi, Sung-Gil
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.91-99
    • /
    • 2010
  • The objective of this work was to investigate the influence of ultrasonification on extraction yield and chemical properties of green tea infusion. Changes in total soluble matter(TSM), vitamin C, total phenolic compounds, flavonols, catechins, caffeine, free amino acids contents in green tea infusion(GTI) influenced by ultrasonification at $60^{\circ}C$ of extraction temperature for 1, 5, 30, and 60 min were investigated. The amount of infused TSM increased about 5.3% by ultrasonification for 60min. Vitamin C contents also increased 0.21, 0.16, 0.31 mg/g from 1 to 30 min by ultrasonification. However, vitamin C decreased from 2.47 to 2.22 mg/g at 60min. Total phenol compounds contents increased about 10~13 mg/g on all extraction times by ultrasonification. Flavonols such as, myricetin, quercetin, kaempferol were increased to doubled contents as an influence of ultrasonification. Catechins such as, EGCG, EGC, ECG, EC, (+)-C and caffeine contents showed same tendency as the results of vitamin C. On the other hand, result of free amino acids showed different tendency. All amounts of free amino acids did not increase by ultrasonification. Consequently, content of bioactive compounds such as, vitamin C, total phenolic, flavonols and catechins in green tea infusion were influenced by ultrasonification.

Evaluation of Cleanness and Physical Properties of W/O Microemulsion (W/O Microemulsion 세정제의 물성 및 세정성 평가)

  • Lee, Myung Jin;Han, Ji Won;Lee, Ho Yeol;Han, Sang Won;Bae, Jae Heum;Park, Byeong Deog
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.769-777
    • /
    • 2002
  • Using four components - nonionic surfactants, water, hydrocarbon oil and an alcohol as cosurfactant, 12 types of cleaning agents were prepared, and their physical properties such as surface tension, viscosity, electroconductivity and phase stability were measured. As the formulated cleaning agents have low surface tensions(30.5-31.1 dyne/cm) and low viscosities (1.6-7.2 c.p.), they are satisfied with the general physical properties of water-in-oil(W/O) microemulsions for their industrial use. They showed a tendency that their temperature range for stable one-phase microemulsion decreased in accordance with the increase of alcohol/surfactant(A/S) ratio in the formulations. However, the temperature range of one-phase microemulsion was much more affected by hydrophilic lipophillic balance(HLB) value of the nonionic surfactant which increased its temperature range and it increased in accordance with the higher HLB value in the formulations. And the maximum content of water which can keep stable one-phase W/O microemulsion was measured at each sample. In addition, their temperature range for stable one-phase microemulsion was also measured. It was confirmed that the selection of surfactant type was very important for formulating a cleaning agent, since the W/O microemulsion system with the nonionic surfactant of the lower HLB value showed better cleaning efficacy that of the higher HLB value for abietic acid as a soil, which was used for preparing a rosin-type flux. In the formulated cleaning agents with the increase of A/S ratio in the formulations, however, there was no significant difference in cleaning efficacy. It was investigated that the differences of their cleaning efficacy was affected by the change of the condition of temperature and sonicating frequency as important factors in the industrial cleaning. That is, the higher, their cleaning temperature and the lower, their sonicating frequency, the more increased, their cleaning efficacy. Furthermore, using optical instruments like UV/Visable Spectrophotometer and FT-IR Spectrometer, their cleaning efficacy for abietic acid was measured. The removal of soil from the contaminated rinse water was measured by gravity separation method in the rinse bath. As a result, the cleaning agent system having the nonionic surfactant of HLB value 6.4 showed over 85% water-oil separation efficacy at over $25^{\circ}C$. Therefore, it was demonstrated in this work that the formulating cleaning agents were very effective for cleaning and economical in the possible introduction of water recycling system.

A study on the slip-up speed of a shaft using heating slip form (히팅슬립폼을 적용한 수직구 구조물의 상승속도에 관한 연구)

  • Ko, Eomsik;Lee, Sanghun;Park, Jongpil;Zi, Goangseup;Kim, Changyong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.811-823
    • /
    • 2019
  • Slip form method is applied to many cases of a shaft these days because it is safer, more economical and faster than cast-in-place method. Slip-up height of the method is approximately 2.5 to 4.0 m/day. If the temperature of concrete is outside the range of 10 to 30℃, the effects of changes in strength or elastic characteristics are significant. Therefore, it is difficult for slip-up speed to be higher than 3 m/day during winter construction. In addition, concrete has heat caused by hydration, which causes temperature cracking of hardened concrete. Therefore, temperature control of concrete curing is necessary for the continuous slip-up of slip form. In this study, the rebound hardness, time of ultrasonic waves propagation, heat of hydration, and external temperature are measured by developing heating panels and test devices for the continuous slip-up. Based on this, heating slip form is manufactured; this was applied to "Kimpo sites" and "Sinwol sites". The compared slip-up speed samples were 1.9 m/day or 0.200 m/hr on average at Gimpo sites (08:00~17:30) and 2.0 m/day or 0.210 m/hr at Sinwol sites.

스퍼터링을 이용한 ITO 박막의 저온 증착

  • Jang, Seung-Hyeon;Lee, Yeong-Min;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.263-263
    • /
    • 2010
  • 투명도전막(indium tin oxide; ITO)은 투명하면서도 전기 전도도가 높기 때문에, 액정표시소자(LCD; Liquid Crystal Display), 전자발광소자(ELD; Electroluminescent Display) 및 전자 크로믹 소자(Electrochromic Display)를 포함하는 평판형 표시 소자(FPD; Flat Panel Display)와 태양전지 등에 이용되고 있다. 낮은 비저항과 높은 투과율의 ITO 박막은 $300^{\circ}C$ 이상의 고온에서 코팅해야 하는 것으로 알려져 있다. 그러나 최근 플라스틱과 같은 연성 소자가 전자부품에 널리 이용되면서 ITO를 저온에서 증착해야할 필요성이 대두되고 있다. 본 연구에서는 ITO를 플라스틱에 적용하기 위한 저온 코팅 공정 및 시편의 전 후처리공정을 개발하여 박막의 특성을 알아보고자 한다. 실험에 사용된 기판은 고투과율의 고분자(polyethylene terephthalate; PET) 필름이며 $5\;{\times}\;10\;cm^2$의 크기로 절단하여 알코올로 초음파 세척을 실시하였고, 진공 용기에 장입한 후 펄스전원을 이용하여 3분간 in-situ 청정을 실시하였다. ITO 코팅은 마그네트론 스퍼터링을 이용하였으며, 코팅시간, 전처리, 후처리, 기판온도, 산소유량 등 코팅 조건에 따른 박막의 특성을 조사하였다. ITO 박막의 코팅 조건에 따른 박막의 결정구조 분석은 x-선 회절(x-ray diffraction; XRD)을 이용하였고, 박막의 표면형상과 두께 보정 및 단면의 미세조직과 결정 성장 여부 등은 투과전자 현미경(transmission electron microscope; TEM)을 이용하여 분석하였다. 또한 ITO 박막의 면저항과 분광특성은 four-point Probe (CMP-100MP, Advanced Instrument Technology), spectrophotometer (UV-1601, SHIMADZU)를 이용하여 측정하였다. ITO 박막의 광학특성 분석 결과 전광선 투과율은 두께에 따라 변화 하였지만, 색차와 Haze 값은 증착 조건에 따라 큰 차이는 보이지 않았다. 그리고 박막의 결정화에 영향을 주는 가장 중요한 인자는 기판온도이지만, 기판온도를 높이지 못할 경우 비평형 마그네트론(unbalanced-magnetron; UBM)에 의해서 플라즈마 밀도를 높이는 방법으로 유사한 효과를 얻을 수 있음을 확인하였다.

  • PDF

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

An Object Recognition Performance Improvement of Automatic Door using Ultrasonic Sensor (초음파 센서를 이용한 자동문의 물체인식 성능개선)

  • Kim, Gi-Doo;Won, Seo-Yeon;Kim, Hie-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.97-107
    • /
    • 2017
  • In the field of automatic door, the infrared rays and microwave sensor are much used as the important components in charge of the motor's operation control of open and close through the incoming signal of object recognition. In case of existing system that the sensor of the infrared rays and microwave are applied to the automatic door, there are many malfunctions by the infrared rays and visible rays of the sun. Because the automatic doors are usually installed outside of building in state of exposure. The environmental change by temperature difference occurs the noise of object recognition detection signal. With this problem, the hardware fault that the detection sensor is unable to follow the object moving rapidly within detection area makes the sensing blind spot. This fault should be improved as soon as possible. Because It influences safety of passengers who use the automatic doors. This paper conducted an experiment to improve the detection area by installing extra ultrasonic sensor besides existing detection sensor. So, this paper realize the computing circuit and detection algorithm which can correctly and rapidly process the access route of objects moving fast and the location area of fixed obstacles by applying detection and advantages of ultrasonic signal to the automatic doors. With this, It is proved that the automatic door applying ultrasonic sensor is improved detection area of blind spot sensing through field test and improvement plan is proposed.

A Study on the Factors Affecting Entrapment Efficiency and Particle Size of Ethosomes (Ethosomes의 포집효율과 입자크기에 영향을 주는 인자에 관한 연구)

  • Jin, Byung Suk;Lee, Sang Mook;Lee, Kwang Hee
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • Ethosome is a liquid crystalline vesicle prepared by hydration of ethanol-dissolved lecithin with a solution containing hydrophilic components. Investigation of factors affecting the entrapment efficiency and particle size of ethosomes was carried out, because the high entrapment efficiency and small particle size are prerequisite in developing ethosomes as a drug delivery system. The variations of properties of ethosomes with constituent composition and preparation method were examined using a calcein as a hydrophilic marker. It was observed that the amount of ethanol and calcein solution, phosphatidyl choline content in lecithin, preparation temperature, stirring rate, and PBS addition method had a considerable effect on the properties of ethosome. Sonication treatment resulted in the reduction of entrapment efficiency of ethosome, which was due to the release of entrapped components in the vesicles by strong sonication vibration.

Efficient Stripping of High-dose Ion-implanted Photoresist in Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 고농도이온주입 포토레지스트의 효율적인 제거)

  • Kim, Do-Hoon;Lim, Eu-Sang;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.300-305
    • /
    • 2011
  • A mixture of supercritical carbon dioxide and a co-solvent was employed to strip a high-dose ion-implanted photoresist (HDIPR) from the surface of semiconductor wafers. The stripping efficiency was highly improved by the physical force generated from a ultrasonication tip inside the reactor. In addition, helium gas was injected in the reactor as a barrier gas before the introduction of pure supercritical $CO_2$ ($scCO_2$), which reduced the rinsing time significantly. The effect of co-solvents on the stripping efficiency was investigated. The wafer surfaces were analyzed by scanning electron microscopy and by an energy dispersive X-ray spectrometer.

REVIEW: Dynamic force effects on batteries (종설: 동적 부하가 배터리에 미치는 영향)

  • Sunghyun, Jie;Taeksoo, Jung;Seunghoon, Baek;Byeongyong, Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.669-679
    • /
    • 2022
  • Lithium-ion battery has been used for lots of electronic devices. With the popularization of batteries, researchers have focused on batteries' electrochemical performances by environmental conditions, such as temperature, vibration, shock and charging state. Meanwhile, due to very serious global warming, car companies have started using lithium-ion batteries even in cars, replacing internal combustion engines. However, batteries have been developed based on non-moving systems which is totally different from vehicles. In the line of the differences, researchers have tried to reveal relationship between variables from dynamic systems and batteries. In this review, we discuss the comprehensive effect of vibration and shock on batteries. We firstly summarize vibration profiles and effect of normal vibration on batteries. We also sum up effect of shock and penetration on batteries and introduce how ultrasound influences on batteries. Lastly, outlook for the battery design as well as dynamic design of EVs are discussed.

Strucural, Thermal, Electrical Characteristics of Epoxy-Nanocomposites according to Dispersion Agent Treatment (분산제 처리에 따른 에폭시-나노콤포지트의 구조적, 열적, 전기적 특성)

  • Park, Jae-Jun;Lee, Sang-Hyup;Kim, Jae-Bong;Lee, Sung-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.256-256
    • /
    • 2009
  • 에폭시수지에 층상실리케이트 나노입자를 충진함량별로 충진시킨 나노콤포지트를 제조하여 충진함량의 변화와 분산제 첨가를 통하여 분산제효과를 조사하였다, 충진함량의 변화는 1, 3, 5, 7, 9wt%과 분산제 변화를 05, 1.5, 2.5wt%로 구조적, 열적, 전기적 특성을 조사하였다. 분산처리는 초음파 기법을 적용하여 분산하였다. 구조적 특성으로 X-RD조사한 결과 0.5wt%분산제처리를 한 경우 완전한 박리를 가져오지 못하였고, 부분적인 박리를 가져왔다. 이는 분산제 처리량이 나노입자 표면정체를 제어할수 없기 때문으로 사료된다. 분산제 1.5wt%를 첨가한경우로 충진함량별 X-RD특성은 1wt%는 완전한 박리를 나타내었고 함량의 증가에 따라 박리정도가 약간 낮아지는 경우를 알 수 있다. 이런 경우 전기적특성중 단시간 절연파괴특성에서 나타내고 있다. 충진함량이 낮을수록 스케일파라미터의 값이 높고, 함량이 증가할수록 낮아지는 경우이다. 이는 분산정도에따라 절연파괴강도에 영향을 주고 있음을 알 수 있다. 열적특성에서 유리천이온도는 1,3,5wt%에서는 증가하는 결과를 더욱 충진함량이 증가하면 오히려 감소되는 특성을 나타내고 있다. 결국은 분산정도에따라 전기적 특성 및 열적특성이 크게 변화되는 특성을 나타내었다.

  • PDF