• Title/Summary/Keyword: 초음파화학

Search Result 355, Processing Time 0.03 seconds

Ultrasound-assisted Extraction of Total Flavonoids from Wheat Sprout: Optimization Using Central Composite Design Method (밀싹으로부터 플라보노이드성분의 초음파 추출 : 중심합성계획모델을 이용한 최적화)

  • Lee, Seung Bum;Wang, Xiaozheng;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.663-669
    • /
    • 2018
  • The process of extracting active ingredients from wheat sprout using ultrasound assisted method was optimized with a central composite design model. The response value of the central composite design model established the extraction yield and the total flavonoids content, main effects and interactive effects were analyzed depending on independent variables such as the extraction time, volume ratio of ethanol to ultrapure water, and ultrasonic irradiation power. The volume ratio of ethanol to ultrapure water and ultrasonic irradiation power were relatively large for the extraction yield and the extraction time was most significantly affected the total flavonoids, Considering both the extraction yield and total flavonoids content, the optimal extraction conditions were as follows: the extraction time of 17.00 min, volume ratio of ethanol to ultrapure water of 50.25 vol%, ultrasonic irradiation power of 551.70 W. In this case, the extraction yield and total flavonoids content were 28.43 wt% and $29.99{\mu}g\;QE/mL\;dw$, respectively. The actual experimental extraction yield and total flavonoids content under this condition were 8.73 wt% and $29.65{\mu}g\;QE/mL\;dw$, respectively with respective error rates of 1.05 and 1.13%.

Optimization of Antioxidant Extraction from Dandelion (Taraxacum officinale) Leaves Using BBD-RSM (BBD-RSM을 이용한 민들레로부터 항산화성분의 추출공정 최적화)

  • Han, Kyongho;Jang, Hyun Sik;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.408-414
    • /
    • 2019
  • In this study, an antioxidant was extracted from dandelion leaves using traditional hot water and ultrasonic extraction methods. In order to optimize the extraction yield and total flavonoid, an antioxidant, Box-Behnken design (BBD) model among response surface analysis methods was used. In the case of hot water extraction, the extraction temperature and time as well as the ratio of alcohol/ultrapure water were set as variables, and for the ultrasonic extraction, the ultrasonic survey century and irradiation time and the ratio of alcohol/ultrapure water were variables. Optimum extraction conditions in the hot water extraction method were the extraction temperature and time of $45.76^{\circ}C$ and 1.75 h and the ratio of alcohol/ultrapure water of 41.92 vol.%. While for the ultrasonic extraction method the survey century of 512.63 W, the ratio of alcohol/ultrapure water of 56.97 vol.% and the extraction time of 20.79 min were optimum conditions. Expected reaction yield and flavonoid content values under the optimized condition were calculated as 22.09 wt.% and 28.98 mg QE/mL dw, respectively. In addition, the error value of less than 3% was obtained validating our optimization process.

Study on a Real Time Quantitative Diagnostic Technique for Measuring CVD Precursors (CVD 공정의 전구체 잔존량 실시간 진단방법 연구)

  • Yun Ju-Young;Shin Yong-Hyoen;Chung Kwang-Hwa
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.110-114
    • /
    • 2005
  • This study proposes an accurate method of monitoring precursor consumption in chemical vapor deposition (CVD) systems. Since precursor costs are significant, finding an efficient method to monitor precursor consumption is necessary One example is the use of non-contact and inexpensive ultrasonic sensors for determining the liquid level in a container. In this study, sensors based on ultrasonic techniques have been developed for monitoring the precursor consumption in a CVD system. Moreover, the prototype sensors developed in this study can be useful in the field of semiconductors.

Synthesis of Monodisperse Magnetite Nanocrystallites Using Sonochemical Method (음향화학법을 이용한 균일한 나노 자성체의 합성)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.163-167
    • /
    • 2006
  • Ultrasonic irradiation in a solution during the chemical reaction may accelerate the rate of the reaction and the crystallization at low temperature. We have synthesized nanometer sized magnetite particles using coprecipitation method, sonochemical method without surfactant, and sonochemical method with surfactant, in order to investigate the effect of ultrasonic irradiation and surfactant on the coprecipitates of metal ions. The size of the magnetite nanoparticles prepared by coprecipitation method, and sonochemical method without surfactant showed broad distributions. But we got uniform nanoparticles using a sonochemical method with oleic acid. The average size of the particles can be controlled by the ratio $R=[H_2O]/[surfactant]$. The size of the magnetite nanoparticles prepared by this method showed narrow distributions. We have characterized the nanoparticles using an X-ray diffraction (XRD), a superconducting quantum interference device (SQUID), and atomic force microscope (AFM). The size and distribution of the magnetite nanoparticles were measured by dynamic light scattering (DLS) method.

A Comparative Study on Radiochemical Pre-treatment Methods for Airborne Uranium-Isotropic Analysis (공기 중 우라늄 동위원소 분석을 위한 방사화학 전처리방법에 대한 비교 분석 연구)

  • Kang, Han-Byeol;Chung, Heejun;Park, Seunghoon;Shin, Jung-Ki;Kwak, Sung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.101-109
    • /
    • 2015
  • Alpha spectrometry is typically used for the assessment of uranium particle concentrations and its accuracy can be directly related to the accuracy in which the radiochemical pre-treatment is conducted. Ashing and alkali fusion methods are typically used but the ashing method requires longer analysis time and the alkali fusion method is extremely costly. Therefore, a new pre-treatment method using ultrasonic cleaning was developed and its experimental result was compared against the two conventional methods in terms of pre-treatment time, convenience, cost, and recovery rate of a target material. The results that were obtained by the conventional methods(ashing and alkali fusion) and the new method were compared. Consequently, even though the shorter pre-treatment time was required, the new technique showed almost same recovery rate comparing with two conventional methods. The new method was also featured by its relatively lower cost and a simpler process than two conventional methods.

Characteristics of Chemical-assisted Ultrasonic Machining of Glass (화학적기법을 이용한 유리의 초음파가공 특성)

  • Kim, B.H.;Jeon, S.K.;Kim, H.Y.;Jeon, B.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1349-1354
    • /
    • 2003
  • Ultrasonic Machining process is an efficient and economical means of precision machining on glass and ceramic materials. However, the mechanics of the process with respect to crack initiation and propagation, and stress development in the ceramic workpiece subsurface are still not well understood. In this research, we investigate the basic mechanism of chemical assisted ultrasonic machining(CUSM) of glass through the experimental approach. For the purpose of this study, we designed and fabricated the desktop micro ultrasonic machine. The feed is controlled precisely by using the constant load control system. During the machining experiment, the effects of HF(hydrofluoric acid) characteristics and machining condition on the surface roughness and the material removal rate are measured and compared.

  • PDF

A Study on the Chamical and Physical Characteristics of Ultrasonic-Energy-Added Diesel Fuel (초음파 에너지 부가 지젤연료의 화학적, 물리적 특성에 관한 연구)

  • 최두석;윤면근;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.147-155
    • /
    • 1996
  • This study investigated the characteristics of ultrasonic-energy-added diesel fuel. We compared the characteristics used H-NMR spectrum, FT-IR spectrum, viscosity and surface tension between conventional diesel fuel and ultrasonic-energy-added diesel fuel. The result are obtained as follow : We knew that ultrasonic energy result to reduce BI and weaken viscosity and surface tension. Also, the ultrasonic energy caused to reduce aromatics Ha and increase Alkanes Hγ. The effect of ultrasonic-energy-added dieselfuel was principally caused by change of chemical structures and a physical characteristics.

  • PDF

Sulphamic Acid: an Efficient Catalyst for the Synthesis of α-HydroxyPhosphonates Using Ultrasound Irradiation (술팜산: 초음파 조사를 이용한 α-히드록시 인산염 합성의 효과적인 촉매)

  • Sadaphal, Sandip A.;Sonar, Swapnil S.;Pokalwar, Rajkumar U.;Shitole, Nanasaheb V.;Shingare, Murlidhar S.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.536-541
    • /
    • 2009
  • Sulphamic acid has been exploited as a cost-effective catalyst and green alternative for conventional acidic materials to synthesize $\alpha$-hydroxy phosphonates under solvent-free condition. The reaction carried out using ultrasound irradiation with better yields and shorter reaction time.

Effect of High Intensity Ultrasonic Wave on the Degradation Characteristics of PEO (고강도 초음파에 의한 PEO의 분해특성에 관한 연구)

  • 김형수;김미화
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.353-359
    • /
    • 2002
  • High intensity ultrasound has been applied to a series of poly(ethylene oxide) (PEO)/water systems having different molecular weights of PEO. Major interest was focused on the effect of ultrasonic wane on the melt viscosity chemical structure and thermal properties of PEO. The expected role of ultrasound used in this study was to generate macroradicals of PEO chains by the formation and subsequent collapse of bubbles. It was found that the melt viscosity and chemical structure of PEO change significantly depending on the sonication time. For the prolonged sonication, PEO chains were significantly degraded and new end groups were formed by the interplay of various radical species. When the molecular weight of PEO was relatively higher, the crystallization rate was decreased and the intensity of the melting peak was reduced.

The Effect of Ultrasonic Energy on Esterification of Vegetable Oil (식물성유지의 에스테르화반응에서 초음파에너지 효과 분석)

  • Lee, Seung-Bum;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.532-535
    • /
    • 2009
  • In this study, the fatty acid methyl ester was prepared from the vegetable oil by inducing ultrasound energy. The ultrasound energy was applied to the esterification reaction for heating and stirring effects. Ultrasonic induction results in the shortened reaction time and brings the increase of the methyl ester yield. However, the continuous introduction of ultrasound during the esterification reaction results in temperature increase, then the over-heating of reaction temperature was ineffective. Therefore, the system temperature was controlled at constant temperature state with the cooling circulation. The ultrasound induction reaction had the fatty acid methyl ester yield of 93% at the reaction time was 30 minutes, faster than the traditional esterification process.