• Title/Summary/Keyword: 초음파에너지

Search Result 320, Processing Time 0.023 seconds

A numerical study on the unsteady agglomeration behavior of algae in the ultrasonic wave pressure field (초음파 압력장에서 미세조류 응집 거동에 관한 비정상상태 수치해석 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Jung, Sang Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.67-73
    • /
    • 2017
  • For the bio-fuel conversion of algae, several processes are needed including cultivating, agglomeration, extracting and conversion to the bio-fuel. The production cost for each process makes the total production cost of algae bio-fuel conversion. The production cost of algae bio-fuel has still higher than that of the other commercial bio-fuel. The reduction of production cost for each process enables the competitive price as a bio-fuel. It is difficult to separate the algae from water because of the similar magnitude of density each other. The agglomeration and extracting of algae using ultrasonic wave is rare effect of environmental hazard and also it is appropriate technology for the next generation energy resources. The present research is investigated for the elucidation of algae behavior in the water with the ultrasonics wave. For this purpose, the unsteady computational fluid dynamic analysis has been conducted in the ultrasonic pressure field. The velocity, pressure and algae concentration changes with time have been analysed to clarify the mechanism of algae separation by ultrasonic wave.

Infrared Thermal Imaging for Quantification of HIFU-induced Tissue Coagulation (적외선 이미징 기반 HIFU 응용 조직 응고 정량화 연구)

  • Pyo, Hanjae;Park, Suhyun;Kang, Hyun Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.236-240
    • /
    • 2017
  • In this paper, we investigate the thermal response of skin tissue to high-intensity focused ultrasound (HIFU) by means of infrared (IR) thermal imaging. For skin tightening, a 7-MHz ultrasound transducer is used to induce irreversible tissue coagulation in porcine skin. An IR camera is employed to monitor spatiotemporal changes of the temperature in the tissue. The maximum temperature in the tissue increased linearly with applied energy, up to $90^{\circ}C$. The extent of irreversible tissue coagulation (up to 3.2 mm in width) corresponds well to the spatial distribution of the temperature during HIFU sonication. Histological analysis confirms that the temperature beyond the coagulation threshold (${\sim}65^{\circ}C$) delineates the margin of collagen denaturation in the tissue. IR thermal imaging can be a feasible method for quantifying the degree of thermal coagulation in HIFU-induced skin treatment.

Effect on Copper Recovery by Ultrasonic Energy during Cementation Reaction from Copper-contained Waste Etching Solution (구리 함유 폐에칭액의 시멘테이션 반응 시 구리 회수에 미치는 초음파 에너지의 영향)

  • Kim, Boram;Jang, Dae-Hwan;Kim, Dae-Weon;Chae, Byung-Man;Lee, Sang-Woo
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.34-39
    • /
    • 2022
  • In this study, effects of ultrasonic energy on the cementation reaction and copper recovery rate were investigated for different types of iron samples, such as plate, chip, and powder, for recovering copper from waste etchant, which contained ~3.5% copper. The cementation reaction using the ultrasonic energy was more effective than the simple stirring reaction, with the former exhibiting a high copper recovery rate than the latter for the same time interval. When cementation was performed for 25 min with ultrasonic treatment, rather than simple stirring, the copper recovery rate of the plate, chip, and powder improved from 7.0% to 12.0%, 14.0% to 46.1%, and 41.9% to 77.2%, respectively. Therefore, the use of ultrasonic energy could detach the copper recovered by the cementation reaction from the surface of the iron samples, thereby increasing the copper recovery rate. Owing to the use of ultrasonic energy, the copper recovery rate increased by 2-6 times, and the recovered copper exhibited a decreased particle size compared to that obtained via simple stirring.

Applied Cases and Application Technologies of Ultrasonic Nanocrystalline Surface Modification and Accelerated Fatigue Life Evaluation Using Ultrasonic Elastic Vibrational Energy (초음파탄성진동에너지를 이용한 표면개질처리 및 가속피로수명평가 기술의 적용사례 및 응용기술)

  • Jo, In-Sik;Jo, In-Ho;Oh, Joo-Yeon;Lee, Chang-Soon;Pyoun, Young-Sik;Park, In-Gyu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.115-121
    • /
    • 2013
  • It is greatly expected that the technologies of durability enhancement and evaluation for the core structures of plant facilities, marine plant and bridge constructures will be greatly expanded in the plant industry fields. In this study, the actively ongoing applied cases were tried to be analyzed in the present domestic industry fields through the Ultrasonic Nanocrystalline Surface Modification (UNSM) and Ultrasonic Fatigue Test (UFT) technologies using ultrasonic elastic vibrational energy, and the new application technology to improve the durability of plant industry field, especially plant facilities, marine plant and core weld components of bridge constructures will be presented.

Application of Ultrasonic Energy to Fast Consolidation of Soft Clays (연약지만 압밀 촉진을 위한 초음파 에너지의 활용)

  • Park, Ji-Ho;Hwang, Jung-Ha;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1039-1042
    • /
    • 2008
  • Dredged fills have been widely used to secure a land for the engineering activities. Before the useful application of the area, the soils should be consolidated to acquire the aquate shear strength. Several research projects have attempted to develop a method fur accelerating the consolidation of soft clay. Our study examined the effect of ultrasonic energy on the consolidation of soft clay, Tests were conducted using specially designed and fabricated equipment that was capable of directly applying ultrasonic energy to soil samples during consolidation tests. The specimens were prepared from slurry using a centrifuge facility, and tests were conducted at various levels of ultrasonic power and treatment time. The study showed that ultrasonic energy had a considerable effect on consolidation time, suggesting that ultrasound can be used to reduce the consolidation time of soft clay.

A Study on the Development of High-intensity focused Ultrasound Device for the Beauty Treatment Health Care (미용 치료 헬스케어를 위한 고강도 집속 초음파 장치 개발 연구)

  • Lee, Woo-Cheol;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1259-1264
    • /
    • 2016
  • Ultrasonic therapy has received great attention in the field of cosmetics related to the treatment of skin thickening because of its fast recovery and safety. In this study, an output circuit of a high intensity focused ultrasound system was developed for the treatment of beauty. To verify the applicability of the high intensity focused ultrasound system to the cosmetic treatment field, we measured and analyzed the 3D ultrasound intensity energy using a hydrophone. And high-intensity focused ultrasound devices were found to be useful for cosmetic treatment.

Measurement of sonoluminescence intensity for evaluation of the amount of radical generated by ultrasonic cavitation (초음파 캐비테이션에 의해 생성되는 라디칼의 발생량 평가를 위한 소노루미네센스 발광강도의 측정)

  • Jungsoon Kim;Moojoon Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.50-56
    • /
    • 2023
  • The hydroxyl radical (·OH) and superoxide anion radical (·O2- ) generated by the shock wave generated during ultrasonic cavitation collapse in TiO2 suspension are highly useful because they can sterilize and disinfect. For practical use as a sterilization method without any chemicals, in this study, we proposed a method for evaluating the generation of radicals generated by high-intensity ultrasound emitted to titanium dioxide suspension. In the proposed method, the sonoluminescence phenomenon, which emits light by ultrasonic cavitation decay energy, was utilized, and the degree of radical generation was evaluated through the amount of light energy by sonoluminescence. As a result, even at a low concentration of titanium dioxide of 0.02 wt%, light energy 5 times higher than in the absence of titanium dioxide was received. After that, as the concentration increased by 0.1 wt%, the luminous intensity of sonoluminescence increased linearly by about 14.8 × 10-12 lm. Therefore, it was confirmed that the radicals generated by radiating high-intensity ultrasound to the titanium dioxide suspension increased linearly as the concentration of titanium dioxide increased within a given concentration range.

A Study of the DI Diesel Engine Using Light Diesel-Water Emulsified Fuel with Ultrasonic Apparatus - Effect of Water Content on Engine Performance and Exhaust Gas Characteristics - (초음파장치를 이용한 경유-물 유화연료 사용 디젤엔진에 관한 연구 -함수율이 기관성능 및 배기배출물 특성에 미치는 영향-)

  • 김봉석;이영재
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.212-219
    • /
    • 1997
  • The objective of this study is to investigate the effects light diesel-water emulsified fuel on performance and exhaust emissions of the compression ignition engine. The experimental results of light diesel-water emulsified fuel operation with new type ultrasonic emulsification apparatus as compared with light diesel operation are very positive; maximum 28% reduction of SFC (in the case of 30% of water content), maximum 60% reduction of smoke (in the case of 30% of water content), maximum 79% reduction of CO emission (in the case of 30% of water content). However, comparing light diesel-water emulsified fuel and light diesel in the same engine under the same operating conditions, power and torque were lower in the case of emulsified fuel. In view of the results for the above mentioned, the mixing of water into light diesel in the form of emulsification proved to be the best means for reduction of specific fuel consumption and exhaust emissions of C.I. engines.

  • PDF

Study on Electrical Impedance Matching for Broadband Ultrasonic Transducer (광대역 초음파 변환기를 위한 전기 임피던스 정합 연구)

  • Kim, Geonwoo;Kim, Ki-Bok;Baek, Kwang Sae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.37-43
    • /
    • 2017
  • Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of ${\mu}m$) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately $50{\Omega}$ to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

The development of ultrasonic transmitter to enhance the efficiency of heat transfer rate in boiler (보일러내 열 전달 효율 개선을 위한 초음파발신기 개발)

  • Heo, Pil-Woo;Lee, Yang-Lae;Lim, Eui-Su;Koh, Kwang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • Ultrasonic transmitter used for scale prevention in boiler or heat exchanger is composed of the magnetostrictive material which transforms electric energy into ultrasonic wave and the horn which amplifies generated ultrasonic wave and transfers it into medium loaded. In this paper, we have performed the shape design for magnetostrictive material and analyzed a few type of horns which amplify generated ultrasonic wave and found each solution theoretically. Final length of the horn has been determined by measuring the sound pressure in medium between theoretical value and experience data. At last we have given the results of our study for the effects of ultrasonic wave irradiated by manufactured ultrasonic transmitter on preventing scale deposition on test pipe under the similar condition to boiler.