• Title/Summary/Keyword: 초음속 로켓

Search Result 98, Processing Time 0.021 seconds

Performance Characteristics of Secondary Throat Supersonic Exhaust Diffusers (2차목 초음속 디퓨저의 주요 설계 변수에 따른 성능 특성)

  • Park, Jin-Ho;Jeon, Jun-Su;Yu, I-Sang;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.641-644
    • /
    • 2011
  • The performance tests of secondary throat supersonic exhaust diffusers were carried out by using scaled down model and gas nitrogen. It was performed to find the performance characteristics according to diffuser inlet length(Ld), secondary throat length(Lst), divergence length(Ls). There was few change by diffuser inlet length(Ld), but starting pressures of the diffusers were effected by secondary throat length(Lst), divergence length(Ls). It was confirmed that starting pressure was not changed over 8 Lst/Dst.

  • PDF

The Experimental Study of Thermal Stress at Supersonic Nozzle (초음속 노즐의 열구조 안전성에 관한 실험적 연구)

  • Kim, Seong-Jin;Han, Hyeok-Seop;Lim, Jae-Hyock;Park, Eui-Yong;Baek, Ki-Bong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.497-500
    • /
    • 2011
  • The experimental study of thermal stress in the solid rocket engine nozzle with two different materials, SCM-440 and STS-630, was evaluated. SCM-440 has lager temperature increasing rate and higher temperature at the nozzle expansion region than STS-630. Thermal barrier efficiency and endurance of Zirconia coating were evaluated after making two more nozzles coated by Zirconica. Both coated materials showed about 70 percent higher thermal barrier efficiency than uncoated nozzles. Therefore, Zirconia coating using plasma spray method was useful in thermal safety at supersonic nozzle.

  • PDF

Analysis of Characteristics of Second Throat Exhaust Diffuser for Simulating High-Altitude of Liquid Rocket Engine by Using Computational Fluid Dynamics (CFD를 이용한 액체로켓엔진 고고도 모사용 2차목 초음속 디퓨져 특성 해석)

  • Moon, Yoon-Wan;Lee, Eun-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.968-969
    • /
    • 2011
  • The characteristics of second throat exhaust diffuser were investigated by using CFD. Because the second throat exhaust diffuser(STED) is known as the effective device for simulating high-altitude circumstance more than a cylindrical supersonic diffuser STED was analyzed. The back pressure around nozzle was reduced by entrance size of STED and it was observed that the initial strong shock was the weak oblique shock along the diffuser. Therefore the static pressure at nozzle exit was recovered as the ambient pressure and the STED worked well.

  • PDF

A Study of Supersonic Jets Impinging on Axisymmetric Cone (원뿔에 충돌하는 초음속 제트에 관한 연구)

  • Park,Jong-Ho;Lee,Taek-Sang;Kim,Yun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.26-31
    • /
    • 2003
  • In this paper, supersonic jets impinging on axisymmetric cone were investigated to obtain fundamental design data for jet deflector case of example being VTOL/STOL or rocket launch. It was of interest to study flow phenomena such as shock interactions and separation induced by shear layer. Experiments were conducted to obtain schlieren flow visualization and measurement of surface pressure. Numerical results are compared with the experimental result. The dominant feature of the flow is the shock pattern induced by the interaction between the cone shock and the barrel shock. This pattern can take a wide variety of forms depending on the structure of the free jet and strongly influences the form of the surface pressure distributions.

Variable Inlet Design for Hypersonic Engines with a Wide Range of Flight Mach Numbers (광대역 마하수 비행을 위한 극초음속 엔진 흡입구의 가변형상 설계)

  • Kang, Sang Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2015
  • In present study, a supersonic inlet for dual mode ramjets or RBCC/TBCC engines with a wide range of flight Mach numbers is designed. A conical variable inlet configuration is chosen for the inlet design. Geometric relations with angles of compression cones and conical shock waves are used for the design of the inlet configuration. The performance of the supersonic inlet is confirmed by the numerical analysis. The capture area ratio is maintained around 100% from Mach 3 to 8 conditions.

An Experimental Study of a Diffuser Test Rig for Simulating High-Altitude Environment by using Hot (고온 연소가스를 이용한 고공 환경 모사용 디퓨저 실험장치 연구)

  • Yang, Jae-Jun;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Yong-Wook;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.31-34
    • /
    • 2007
  • Performance tests of supersonic exhaust diffuser were conducted by using hot combustion gas for simulating high-altitude environment. The test rig consists of a combustion chamber, a vacuum chamber, water cooling ring and diffuser. Before combustion experiments, the preliminary leak tests were carried out on the liquid rocket engine and diffuser by using high pressure nitrogen(30barg) and a vacuum pump. The leak test results showed that there was no leaks at high pressure and vacuum pressure conditions.

  • PDF

Acoustic, Entropy and Vortex Waves in a Cylindrical Tube With Variable Section Area (단면적이 변하는 실린더 관에서의 음향, 엔트로피 및 와류 파동)

  • Cho Gyu-Sik;Lebedinsky Ev. V
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.55-66
    • /
    • 2004
  • In this paper a method for finding solutions of acoustic, vortex and entropy wave equations in a cylindrical tube with variable section area was suggested under the consideration of that the high frequency instability in a rocket engine combustion chamber is an acoustic phenomena, which Is coupled with combustion reaction. and that a combustion chamber and exhaust nozzle are usually shaped cylindrically As a consequence of that some method. which enable the mathematical analysis of the influence of entropy and vortex waves to acoustic wave. was suggested. According to the method reflection coefficients of acoustic wave on a supercritical nozzle was numerically calculated, through which it was presented that entropy or vortex waves can strengthen or weaken the reflection rate of acoustic wave.

An Investigation into the Three-dimensional Design of Turbine Rotor Blade for Turbopump (터보펌프용 터빈 로터 블레이드의 3차원 설계 연구)

  • Jeong, Sooin;Choi, Byoungik;Lee, Hanggi;Kim, Kuisoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1038-1044
    • /
    • 2017
  • We are working on improving the performance by applying the three-dimensional design element to the rotor blades of high pressure supersonic impulse turbine that drives turbo pump of liquid rocket engine. In this paper, based on the shape of a rotor blade of a turbopump turbine designed in the past, a three-dimensional shape is applied to a rotor blade through a stacking line change such as sweep and dihedral. After performing the flow analysis, the changes in the turbine performance characteristics for each design element were carefully examined and the results were summarized.

  • PDF

Development of C/SiC Composite Parts for Rocket Propulsion (로켓 추진기관용 C/SiC 내열부품 개발)

  • Kim, Yunchul;Seo, Sangkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.68-77
    • /
    • 2019
  • C/SiC composites were developed by a liquid silicon infiltration(LSI) method for use as heat-resistant parts of solid and liquid rocket propulsion engines. The heat resistance characteristics according to the composition ratio (carbon / silicon / silicon carbide) were evaluated by specimen test through arc plasma, supersonic torch test. An ablation equation for oxidation reactions was presented. Through the combustion test it was verified that various parts such as nozzle insert, exit cone and combustion chamber heat resistant parts for rocket propulsion can be manufactured and proved high ablation performance and thermal structure performance.

Performance Test of a Jet vane type Thrust Vector Control System (제트 베인형 추력편향장치의 성능시험)

  • 신완순;이정민;이택상;박종호;김윤곤;이방업
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.75-82
    • /
    • 1999
  • Theoretical analysis and performance test of Jet vane type Thrust Vector Control(TVC) were conducted using supersonic cold-flow system. The use of TVC Systems an in particular jet vanes, are currently being researched for use in air launch, ship launch, underwater launch and high altitude maneuvering of tactical missiles and rockets. The necessity to generate control forces to rapidly change the course of the missile is frequently required when traditional, exterior aerodynamic surfaces are unable to produce these forces, when the flow over the control surface is insufficient. This situation can occur at launch, or high angles of attack of the control surfaces. Jet vanes peformed well at all altitudes and environmental conditions, and jet vanes are extremely effective at deflection angles up to as high as $30^{\circ}$, make them ideal for the launch and maneuver applications. In this study, performance test of supersonic cold-flow system and visualization of supersonic jet was conducted, and shape and deflection angle effect of two types of jet vanes are investigated.

  • PDF