• Title/Summary/Keyword: 초등학교 1학년 수학과 교육과정

Search Result 188, Processing Time 0.024 seconds

Third grade students' fraction concept learning based on Lesh translation model (Lesh 표상 변환(translation) 모델을 적용한 3학년 학생들의 분수개념 학습)

  • Han, Hye-Sook
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.129-144
    • /
    • 2009
  • The purpose of the study was to investigate the effects of the use of RNP curriculum based on Lesh translation model on third grade students' understandings of fraction concepts and problem solving ability. Students' conceptual understandings of fractions and problem solving ability were improved by the use of the curriculum. Various manipulative experiences and translation processes between and among representations facilitated students' conceptual understandings of fractions and contributed to the development of problem solving strategies. Expecially, in problem situations including fraction ordering which was not covered during the study, mental images of fractions constructed by the experiences with manipulatives played a central role as a problem solving strategy.

  • PDF

An Analysis on Processes of Justifying the Standard Fraction Division Algorithms in Korean Elementary Mathematics Textbooks (우리나라 초등학교 수학 교과서에서의 분수 나눗셈 알고리즘 정당화 과정 분석)

  • Park, Kyo Sik
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.105-122
    • /
    • 2014
  • In this paper, fraction division algorithms in Korean elementary mathematics textbooks are analyzed as a part of the groundwork to improve teaching methods for fraction division algorithms. There are seemingly six fraction division algorithms in ${\ll}Math\;5-2{\gg}$, ${\ll}Math\;6-1{\gg}$ textbooks according to the 2006 curriculum. Four of them are standard algorithms which show the multiplication by the reciprocal of the divisors modally. Two non-standard algorithms are independent algorithms, and they have weakness in that the integration to the algorithms 8 is not easy. There is a need to reconsider the introduction of the algorithm 4 in that it is difficult to think algorithm 4 is more efficient than algorithm 3. Because (natural number)${\div}$(natural number)=(natural number)${\times}$(the reciprocal of a natural number) is dealt with in algorithm 2, it can be considered to change algorithm 7 to algorithm 2 alike. In textbooks, by converting fraction division expressions into fraction multiplication expressions through indirect methods, the principles of calculation which guarantee the algorithms are explained. Method of using the transitivity, method of using the models such as number bars or rectangles, method of using the equivalence are those. Direct conversion from fraction division expression to fraction multiplication expression by handling the expression is possible, too, but this is beyond the scope of the curriculum. In textbook, when dealing with (natural number)${\div}$(proper fraction) and converting natural numbers to improper fractions, converting natural numbers to proper fractions is used, but it has been never treated officially.

  • PDF

An Analysis on Third Graders' Multiplicative Thinking and Proportional Reasoning Ability (초등학교 3학년 학생들의 곱셈적 사고에 따른 비례 추론 능력 분석)

  • Kim, Jeong Won;Pang, Jeong Suk
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2013
  • The primary purpose of this study is to survey multiplicative thinking levels and its characteristics of third graders in elementary school and to analyze how to use it when they solve the proportional problems. As results, the transition thinking ranked the highest among the four kinds of thinking levels when the $3^{rd}$ graders solved the multiplication problems. It means that the largest numbers of students still can not distinguish the additive and multiplicative situations completely and remain in the transition thinking, which thinks both additively and multiplicatively. In addition, the performance of solving proportional problems was distinguished from the levels of thinking. Through this study, we can give some implications of the importance of multiplicative thinking and instructional methods related to multiplication.

  • PDF

On an Analysis of Mathematics Instruction by Scaffolding (비계설정을 통한 수학 교수-학습에 대한 연구)

  • Choi Soon Og;Chong Yeong Ok
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.1
    • /
    • pp.57-74
    • /
    • 2005
  • The aim of this study is to reflect Vygotsky's theory of Zone of Proximal Development and other scholars' scaffolding theories emboding the theory and to examine the effects of mathematics instruction by scaffolding. The subjects of this study consist of 8 fifth graders attending S elementary school which is located in San-Chung county. The teaching-learning processes were videotaped and analysed according to scaffolding components. The results between pretest and posttest regarding to fraction were compared and the responses of students to a questionnaire on the mathematical attitude before and after the teaching experiment. It concludes that mathematics instruction by scaffolding was effective to improve students' mathematical learning ability and positive mathematical attitude.

  • PDF

An Analysis of Operation Sense in Division of Fraction Based on Case Study (사례 연구를 통한 분수 나눈셈의 연산 감각 분석)

  • Pang, Jeong-Suk;Lee, Ji-Young
    • School Mathematics
    • /
    • v.11 no.1
    • /
    • pp.71-91
    • /
    • 2009
  • The purpose of this study was to analyze operation sense in detail with regard to division of fraction. For this purpose, two sixth grade students who were good at calculation were clinically interviewed three times. The analysis was focused on (a) how the students would understand the multiple meanings and models of division of fraction, (b) how they would recognize the meaning of algorithm related to division of fraction, and (c) how they would employ the meanings and properties of operation in order to translate them into different modes of representation as well as to develop their own strategies. This paper includes several episodes which reveal students' qualitative difference in terms of various dimensions of operation sense. The need to develop operation sense is suggested specifically for upper grades of elementary school.

  • PDF

A Study on Children's Statistical Thinking Based on Survey Activities (설문 조사 활동에서 나타난 아동의 통계적 사고에 관한 연구)

  • Kim, Min-Kyeong;Kim, Hye-Won
    • School Mathematics
    • /
    • v.13 no.1
    • /
    • pp.207-227
    • /
    • 2011
  • This study developed a statistical thinking level with constructs framework from based on Jones, Thornton, Langrall, & Mooney (2000) to analyze the 6th graders' thinking level shown on their survey activities. It was modified by 5 constructs framework such as collecting, describing, organizing, representing, and analyzing and interpreting data with four thinking levels, which represent a continuum from idiosyncratic to analytic reasoning. As a result, among four levels such as idiosyncratic level (level 1), transitional level (level 2), quantitative level (level 3), and analytical level (level 4), levels of two through four are shown on statistical thinking levels in this study.

  • PDF

An Analysis of Teaching Statistical Graphs in Elementary School Mathematics Textbooks (초등학교 수학 교과서에 나타난 통계 그래프 지도 방법 분석)

  • Lim Ji Ae;Kang Wan
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.7 no.1
    • /
    • pp.65-86
    • /
    • 2003
  • Mathematics textbooks are substitutive showing real characters of didactic transposition in pseudo-contextualization and pseudo-personalization. This study analyzed statistical graphs in elementary school mathematics textbooks according to the first to the 7th curriculum in Korea. It focused on the didactic principles used in those methods through those view of Didactic Transposition Theory. The features of the elementary school mathematics textbooks in Korea are investigated and described ethnomethodologically according to each curriculum periods in dividing bar graph, line graph, pictograph, graph of ratio, histogram. The teaching sequences and methods of the statistical graphs, order and methods of sub-learning activities, teaming data, matter of the learning activity indicator were summarized. Usually, the teaching sequences, excepting the graphs of ratio, statistical graphs are introduced in the second semester of each grade. The graph of ratio is introduced in the first semester of 6th grade. As a result of analysing sub-Loaming activities, using them increased from the first to the 7th curriculum and its form was fixed constructive and stable at the 4th curriculum textbooks. As a result of analysing the teaming data, the data of the social aspects are used more frequently and the data of the individual preferences trended more gradually. As a result of analysing the matter of the teaming activity indicators, concept-explanation question style were used more frequently. Statement-practice style and consideration style trended gradually. Concluding remarks are: First, the didactic transposition of the elementary school mathematics textbooks developed systematically according to the first to the 7th curriculum; Second, mathematics textbooks gradually introduced the positive learning style of activity and the learners' spontaneousness; Third, more concrete practice activities and reflective activities were variously introduced considering the level and interest of each elementary student.

  • PDF

An Analysis and Criticism on Subject Matter Related to Solid Figures in Korean Elementary School Mathematics Textbook (우리나라 초등학교 수학 교과서에서의 입체도형 관련 지도 내용에 대한 분석과 비판)

  • Kwon, Seok-Il;Park, Kyo-Sik
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.3
    • /
    • pp.221-237
    • /
    • 2011
  • This paper focused on three drawbacks exposed in subject matter related to solid figures in elementary school math textbook. First, general solid figure are introduced before rectangular parallelepiped and cube in fifth grade math textbook, and prism and pyramid in sixth grade math textbook are introduced. Second, the process of abstraction from concrete objects to solid figures is insufficient in sixth grade math textbook. Third, some definitions in subject matter related to solid figures are inconsistent and ambiguous. The following four suggestions can be put forward as a conclusion based on these results. First, subject matter in textbooks must be correspond with that in curriculum. Second, it is necessary to inform teachers of range of subject matter through teachers guide book and manual for curriculum definitely. Third, each grade subject matter in math textbooks must be reexamined. Fourth, regular modification of math textbooks must be possible institutionally.

  • PDF

A Study on the Understanding of the Base Area of Solid Figures in the Elementary Mathematics (초등수학에서 입체도형의 밑넓이 이해에 대한 연구)

  • Kim, Sung Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.2
    • /
    • pp.167-191
    • /
    • 2014
  • In this study, we investigate the term-sets of 'base' or 'bottom': 'the bottom side of a polygon' and 'the base side (of a geometrical figure)'. And we study the concept of 'the base area' in the solid figures and the formula of 'the bottom dimensions'. We start from the 6th grade math problem: 'Find the bottom dimension of the rectangular.' The primary answer is that it does not use the term('the bottom dimensions') in the elementary mathematics. However, in the middle school mathematics, 'the base area' is used as means of 'the area of one bottom side', which is not explained anywhere from the elementary mathematics to middle school mathematics. In addition, the base is defined and 'the surface area' and 'the side area' is taught in the elementary mathematics, so we naturally think of 'the base area'. Therefore we first investigate the term-sets of 'base' or 'bottom' which has two elements: 'the bottom side of a polygon' and 'the base side (of a geometrical figure)'. Next we discuss 'the base area' through curriculum and textbooks, dictionary definitions and so on. In addition, we survey pre-service teachers and teachers about the solid figures and analyse the understanding of 'the base side' and 'the base area' comparatively. In particular, we compare the changes and the tendency of correct answers from the first question to the last question. As a result, we verify 'the cognitive gap' between the elementary mathematics and the middle school mathematics, we suggest the teaching of 'the base area' and succession subjects to teach figure domain in the elementary mathematics.

  • PDF

An Analysis of Storytelling in Elementary Mathematics Textbooks - focusing on Grade Three (초등학교 수학교과서 스토리텔링 분석 - 3학년을 중심으로)

  • Shin, Joonsik
    • Education of Primary School Mathematics
    • /
    • v.18 no.2
    • /
    • pp.141-154
    • /
    • 2015
  • This study analyzed storytelling in mathematics textbooks for third graders, which had been developed according to the 2009 revised mathematics curriculum. Storytelling are supposed to be composed of elements such as message, conflicts, characters, and plot, all of which should be consistent with and focused on unit contents. Especially, conflicts in storytelling should be so obvious that children can take an initiative in learning tasks to solve the problems required by the tasks. The analysis of storytelling in the introduction part in teacher's guides for the third-grade textbooks indicates the following: 1) messages are unclear; 2) conflicts are frequently absent (if any, they are unclear); 3) incidents attributable to textbook characters are insufficient; and 4) plots often lack plausibility. In order to achieve the purposes for which storytelling in mathematics textbooks is intended, storytelling should be reconstructed and improved, taking the roles that each component should serve into consideration.