• Title/Summary/Keyword: 초기 마그마

Search Result 76, Processing Time 0.024 seconds

A Preliminary Survey Result of Cu Occurrence in Tsogttsetsii Area, Mongolia (몽골 촉트체치 지역 동 산출지 예비조사결과)

  • Kim, In Joon;Lee, Jae Ho;Ryoo, Chung-Ryul;Lee, Bum-Han;Jin, Kwang Min;Davaasuren, Otgon-Erdene;Heo, Chul-Ho;Nam, Hyeong Tae
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.313-324
    • /
    • 2017
  • Tsogttsetsii area, an intrusive complex associated with Cu mineralization, is located in the South Gobi, Mongolia. We performed the cross geochemical and extended exploration survey in Tsogttsetsii area. Cu mineralization in Tsogttsetsii area is porphyry Cu type related with alkali granite intruded in Late Carboniferous to Early Permian. In the concentrated occurring to malachite appears extensively prophylitic alteration zone having a chlorite and epidote. As results of the survey, Cu contents of potable XRF and of chemical composition for altered rocks ranges 1.08 to 18.3% in the 30 points and 1.08 to 32.9% in the 13 points, respectively. Ore minerals identified in XRD analysis and polarizing microscope that samples of copper oxides were composed mainly of malachite, azurite, permingeatite and cuprite and the other minerals are pyrite, chalcopyrite, pyrargyrite, dickite, calcite, chlorite and epidote. Mineralization can be considered occurring to selectively some granite of the surrounding aplite and faults in the only upper part coming up the hydrothermal solution of the remaining residual magma after the aplite intrusion.

Geochemistry, Isotope Properties and U-Pb Sphene Age of the Jeongeup Foliated Granite, Korea (정읍엽리상화강암의 지구화학 및 동위원소 특성과 U-Pb 스핀 연대)

  • Jeong, Youn-Joong;Cheong, Chang-Sik;Park, Cheon-Young;Shin, In-Hyun
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.539-550
    • /
    • 2008
  • In this paper, we investigate the geochemical and isotope properties of the Jeongeup foliated granite (hereafter, the JFG) in the Jeongeup area, aiming at establishing the movement age of the Honam shear zone by U-Pb sphene geochronology. In the AMF diagram, the JFG corresponds to the calc alkalic rock series, and belongs to the magnesia region in the diagram of silica versus $FeO^{total}/(FeO^{total}+MgO)$. Additionally, in the Rb-Ba-Sr diagram, it is classified as granodiorite and anomalous granite with distinctive negative Eu-anomaly in the REE patterns. According to the silica and trace element contents, the JFG falls on the type VAG+syn-COLG, which implies that this was formed under the circumstance of compressional continental margin or volcanic arc. $^{143}Nd/^{144}Nd$ isotope ratios range from 0.511495 to 0.511783 and $T_{DM}$ are calculated to be about $1.68{\sim}2.36Ga$. U-Pb sphene ages of the JFG are $172.9{\pm}1.7Ma$ and $170.7{\pm}2.8Ma$, based on $^{238}U-^{206}Pb$ and $^{235}U-^{207}Pb$ ages, respectively. Presumably, the dextral ductile shearing in the Jeongeup area has occurred after 173 Ma.

Paleoproterozoic Hot Orogenesis Recorded in the Yeongnam Massif, Korea (영남육괴에 기록된 고원생대 고온조산운동)

  • Lee, Yuyoung;Cho, Moonsup
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.199-214
    • /
    • 2022
  • The Yeongnam Massif is one of representative basement provinces in the Korean Peninsula, which has experienced high-temperature, low-pressure (HTLP) regional metamorphism and partial melting. Here we reviewed recent developments in Paleoproterozoic (1.87-1.84 Ga) hot orogenesis of the Yeongnam Massif, typified by the granulite-facies metamorphism and partial melting recorded in the HTLP rocks. In particular, spatiotemporal linkage between the metamorphic and magmatic activities, including the Sancheong-Hadong anorthositic magma as a heat source, provides a key to understand the widespread HTLP metamorphism and partial melting in the Yeongnam Massif. Crustal anatexis, resulting from the fluid-present melting and muscovite/biotite dehydration melting, has yielded various types of leucosomes and leucogranites. Zircon and monazite petrochronology, using in-situ U(-Th)-Pb data from the secondary ion mass spectrometry, indicates that the HTLP metamorphism and anatexis lasted over a period of ~15 Ma at ca. 1870-1854 Ma. In addition, a fluid influx event at ca. 1840 Ma was locally recognized by the occurrence of incipient charnockite. Taken together, the Yeongnam Massif preserves a prolonged evolutionary record of the HTLP metamorphism, partial melting, and fluid influx diagnostic for a hot orogen. Such an orogen is linked to the Paleoproterozoic orogeny widespread in the North China Craton, and most likely represents the final phase of crustal evolution in the Columbia/Nuna supercontinent.

Development of Theme-Based Integrated Unit in the Middle School Science and Analysis of it's Effects (중학교 과학수업을 위한 주제중심 통합단원의 개발 및 효과 분석)

  • Park, Soo-Kyong;Kim, Sang-Dal;Ju, Gook-Yong;Nam, Youn-Kyong
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.350-359
    • /
    • 2001
  • The purpose of this study is to develop theme-based integrated science unit by the interdisciplinary approach and to analyze it's effects on the science achievement and the attitude towards science learning. 'Interaction' and 'Stability' were selected as the integrated themes, and the main concept and subconcept in relation to the themes were extracted from the four areas of science, and the learning contents were constructed in the integrated ways. While the main concept have relevance to subconcept in the interaction, the main concept have little relevance to subconcept in the stability. Therefore, the stability was to fit with middle school integrated science theme, but the interaction was not. The theme-based integrated science units developed was implemented in middle school, and the results are follows. First, the science achievement of group of theme-based integrated science teaching is significantly higher than those of group of traditional teaching. Second, the scores of the test of attitude toward science learning of the group of theme-based integrated science teaching is significantly higher than those of group of traditional teaching. Third, the students' perception of theme-based integrated science teaching was positive. The students have participation, interest, motivation in theme-based integrated science teaching, and students have difficulty in learning theme-based integrated science teaching.

  • PDF

Paleozoic Strata in the Lankawi Geopark, Malaysia: Correlation with Paleozoic Strata in the Korean Peninsula (말레이시아 랑카위 지질공원의 고생대 퇴적층: 한반도 고생대 퇴적층과의 대비)

  • Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.417-427
    • /
    • 2010
  • The Lankawi archipelago is located in 30 km western offshore near the Thailand-Malaysia border in west coast of the Malay Peninsula and consists of 99 (+5) tropical islands, covering an area of about $479km^2$. Together with biodiversity in flora and fauna, the Lankawi archipelago displays also geodiversity that includes rock diversity, landform diversity, and fossil diversity. These biodiversity and geodiversity have led to the Lankawi islands as a newly emerging hub for ecotourism in Southeast Asia. As a result, the Lankawi islands have been designated the first Global Geopark in Southeast Asia by UNESCO since July 1st, 2007. The geodiversity of Lankawi Geopark today is a result of a very long depositional history under the various sedimentological regimes and paleoenvironments during the Paleozoic, followed by tectonic and magmatic activities until the early Mesozoic, and finally by surface processes that etched to the present beautiful landscape. Paleozoic strata exposed in the Lankawi Geopark are subdivided into four formations that include the Machinchang (Cambrian), Setul (Ordovician to Early Devonian), Singa (Late Devonian to Carboniferous), and Chuping (Permian) formations in ascending order. These strata are younging to the east, but they are truncated by the Kisap Thrust in the eastern part of the islands. Top-to-the-westward transportation of the Kisap Thrust has brought the older Setul Formation (and possibly Machinchang Formation) from the east to overlay the younger Chuping and Singa formations in the central axis of the Lankawi islands. Triassic Gunung Raya Granite intruded into these sedimentary strata, and turned them partially into various types of contact metamorphic rocks that locally contain tin mineral deposits. Since Triassic, not much geologic records are known for the Lankawi islands. Tropical weathering upon rocks of the Lankawi islands might have taken place since the Early Jurassic and continues until the present. This weathering process played a very important role in producing beautiful landscapes of the Lankawi islands today.

Mineralogy and Genetic Environments of the Seongdo Pb-Zn deposit, Goesan (괴산 성도 연-아연 광상의 산출광물과 생성환경)

  • Ahn, Seongyeol;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.325-340
    • /
    • 2017
  • The Seongdo Pb-Zn deposit, located in the northwestern part of the Ogcheon Metamorphic Belt, consists of skarn ore replacing limestone within the Hwajeonri Formation of Ogcheon Group and hydrothermal vein ore filling the fracture of host rock. Skarn minerals comprise mostly hedenbergitic pyroxene, garnet displaying oscillatory zonal texture composed of grossular and andradite, and a small amount of wollastonite, tremolite, and epidote, indicating reducing condition of formation. Ore minerals of skarn ore include sphalerite and galena with a small amount of pyrite, pyrrhotite, and chalcopyrite. In hydrothermal vein ore, arsenopyrite, sphalerite, chalcopyrite, and pyrite occur with a small amount of galena, native Bi, and stannite. Chemical compositions of sphalerite vary from 17.4 mole% FeS in average for dark grey sphalerite, 3.6 mole% for reddish brown sphalerite in skarn ore, and to 10.3 mole% FeS in hydrothermal vein ore. In comparison with representative metallic deposits in South Korea on the FeS-MnS-CdS diagram, skarn and hydrothermal vein ore plot close to the field of Pb-Zn deposits and Au-Ag deposits, respectively. Arsenic contents of arsenopyrite in hydrothermal vein ore decrease from 31.93~33.00 at.% in early stage to 29.58~30.21 at.% in middle stage, and their corresponding mineralizing temperature and sulfur fugacity are $441{\sim}490^{\circ}C$, $10^{-6}{\sim}10^{-4.5}atm$. and $330{\sim}364^{\circ}C$, <$10^{-8}atm$. respectively. Phase equilibrium temperatures calculated from Fe and Zn contents for coexisting sphalerite and stannite in hydrothermal vein are $236{\sim}254^{\circ}C$. Sulfur isotope compositions are 5.4~7.2‰ for skarn ore and 5.4~8.4‰ for hydrothermal vein ore, being similar or slightly higher to magmatic sulfur, suggesting that ore sulfur was mostly of magmatic origin with partial derivation from host rocks. However, much higher sulfur isotope equilibrium temperatures of $549^{\circ}C$$487^{\circ}C$, respectively for skarn ore and hydrothermal ore, than those estimated from phase equilibria imply that isotopic equilibrium has not been fully established.

멕시코 로얄 은광산 잠재성 평가

  • Heo, Cheol-Ho;Kim, Ui-Jun
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.108-109
    • /
    • 2010
  • IMPACT Silver 주식회사는 Zacualpan 프로젝트의 Royal Mines(이하 로얄 광산)을 인수했다. $124.5\;km^2$에 해당하는 지역의 소유권은 두 개의 멕시코 사기업으로부터 가행중인 광산의 채굴권 구입과 운영 중인 기반시설의 임대를 조건으로 한다. 프로젝트 지역은 멕시코시티로부터 남서방향으로 100 km와 Taxco Silver 광산으로부터 북서방향으로 25 km 떨어진 지점에 위치한다. 기반시설은 비포장 도로, 충분한 전력과 물의 공급 및 숙련공들을 갖추어 우수한 평가를 받고 있다. 소유권은 멕시코인의 개인소유 하에서 무한한 매장량 혹은 자원량을 갖고 운영된 채광과 가공시설을 인수하는 것이다. 소유권 지역을 대상으로 한 IMPACT Silver사의 주 탐사목적은 이미 알려진 광화대의 확장을 위한 잠재성 평가와 다른 지역에서 신규 광상의 유망지역을 발견하는 것이다. Zacualpan 프로젝트의 로얄 광산은 남동 Guerrero terrane의 북부에 위치한다. Teloloapan subterrane은 주로 저변성 녹색편암상으로 구성된 쥬라기 후기에서 백악기 초기의 화산성 퇴적층으로 구성된다. 대부분의 유망지역은 Lower Villa de Ayala층의 중성 내지 염기성 화산성 쇄설암을 모암으로 한다. 다상의 변성작용은 지역 전반에 걸쳐 나타나고, Zacualpan 광산지역에서 수반되는 광화작용을 규제한다. Zacualpan 광산지역은 Sierra Madre del Sur로 알려진 유망 광화대에 해당한다. 이 지역은 화산성 괴상 황화광상과 천열수 맥상광상이 우세하다. 대부분의 천열수 광화작용은 3.2-3.8억 년 전 마그마의 생성이 활발한 판구조 체제 동안 발생하였다. 역사적으로 가장 주요한 지역은 Lipton Vein이다. 현재 Zacualpan 지구에서 채광량은 은 200-500 g/t 정도로 보고되고 있다. 일부 지역은 고품위 은 광화작용(은 1,000 g/t 이상)을 수반하고 있으며, 이는 탐사의 주 타겟이 되고 있다. Zacualpan에서 은 광화작용은 은이 부화된 중유황 천열수 맥상광상으로 상당히 유명하다. Fresnillo, Pachuca 및 Taxco 광산을 포함한 멕시코 소유의 대규모의 잘 알려진 광산들이 이에 해당한다. 이러한 광산들은 부산물로서 금, 아연, 연이 생산된다. 이러한 광상들은 맥상과 각력상 및 산점상 또는 망상세맥의 형태로 산출된다. 광화작용은 석영과 탄산염 맥 내에 주로 황철석과 다양한 섬아연석, 방연석, 은 혹은 금 광물들을 수반한다. 경제성을 갖는 광화작용의 수직적인 연장은 평균적으로 대략 300 m이고, 멕시코 중부에 위치한 Fresnillo의 광화작용은 100 m에서 960 m의 연장을 갖는 것으로 알려져 있다. 아주 오랫동안 Zacualpan에서 광산관계자의 관측과 IMPACT Silver에서 최근 작업의 결과를 토대로, Zacualpan 광산지역의 탐사모델은 새로운 광상의 탐사를 위한 가이드로서 개발되었다. Zacualpan 광산지역에서 가장 높은 경제성을 갖는 광화작용은 북서와 남북방향의 맥 구조를 따라 수반된다. 이러한 맥 구조들은 종종 이 지역을 가로질러 수 km까지 추적되지만, 경제성을 갖는 광화작용은 맥 구조를 따라서 구조적으로 유리한 지역에서 부광대를 형성한다. 부광대를 형성하기 위한 가장 유리한 구조적 지역은 북서와 남북방향으로 발달한 맥 구조들이 교차하는 지역이다. 지난 30년간 채광된 주요 부광대는 폭이 2-6 m 이고 수평연장은 30-150 m 그리고 수직연장은 230-300 m에 이른다. 가장 높은 생산량을 보이는 부광대는 남북방향의 이차 맥들이 Guadalupe 광산의 Lipton 맥을 가로지르는 지역에서 발달한다. 남동쪽으로 현재 Compadres 광산의 Silver Shoot No. 1으로부터 고품위 은을 생산하는 지역은 북서방향의 San Agustin 맥이 북향의 Cometa Navideno 맥에 의해 절단되는 지역에서 산출한다. 모암은 광화작용을 규제하는 또 다른 중요한 요소이다. 광산지역에서 경제성을 갖는 모든 광화작용은 중성 내지 염기성 화산암 특히 안산암과 관련 모암에 배태된다. 부광대가 셰일 혹은 편암으로 전이되는 지역에서, 맥들은 소규모의 세맥으로 나뉘어 진다. Zacualpan의 전형적인 천열수 광상에서 부광대는 상부로 가면서 은의 함량이 증가하고, 하부로 가면서 연 아연의 함량이 증가하는 수직적 대상을 보인다. 금의 함량 변화는 보다 예측이 어려우나 상당히 중요하다. Zacualpan 광산지역의 탐사모델에 사용된 토양 채취, 정밀지도제작, 트렌치 및 시추탐광은 현재 IMPACT Silver사가 이 지역을 대상으로 한 가장 효율적인 탐사방법으로 입증되었다. Zacualpan 프로젝트의 로얄 광산은 하루 500 톤을 제련하는 기반시설과 수반된 채굴권을 갖는 가행 광산들을 포함한다. 현재 IMPACT Silver사는 두 곳의 타겟 지역에서 정밀지도제작, 토양 및 암석 채취, 12공 총 1866 m의 시추탐광에 의한 사전조사로 구성된 4 단계 탐사를 수행했다. 암석 1,953개, 토양 1,631 개, 389 개의 시추코어 시료가 채집되고 분석되었다. 이러한 작업은 추가탐사를 요구하는 수많은 유망 광화대를 규명했다. Compadres 광산에서 현재 가행중인 지하갱 시료는 레벨 1에서 0.9 m의 폭을 갖는 광체에서 은 680 g/t과 금 0.3 g/t, 레벨 3에서 1.67 m의 폭을 갖는 광체에서 은 12,591 g/t과 금 12.07 g/t의 품위를 갖는 것으로 나타났다. 레벨 1에서 3까지 2-3 m의 폭과 30-40 m 연장으로 채광되었다. 시추탐광은 고품위를 갖는 몇몇의 중첩된 맥을 발견했다. Compadres 광산에서 남동방향으로 200 m지점에 위치한 Soledad 지역에서 5 개의 시추공으로부터 동일 맥 시스템이 발견되었고, 고품위 부광대의 상부로 간주되는 몇몇 중요 지점이 발견되었다. 초기 단계의 탐사는 유망 시추탐광 지역인 중간정도 내지 고품위 유망 광화대를 규명했다.

  • PDF

Water Level and Quality Variations of CO2-rich Groundwater and Its Surrounding Geology in the Chungju Angseong Spa Area, South Korea: Considerations on Its Sustainability (충주 앙성지역 탄산천의 수위/수질 변동과 주변 지질 특성: 탄산천의 지속가능성에 대한 고찰)

  • Moon, Sang-Ho;Kee, Weon-Seo;Ko, Kyung-Seok;Lee, Cholwoo;Choi, Hanna;Koh, Dong-Chan
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.477-495
    • /
    • 2022
  • This study examined the sustainability of CO2-rich water by analyzing the water level and water quality change pattern with the amount of its use in Angseong area, Chungju. The origin and supply of CO2 component were discussed in consideration of 87Sr/86Sr ratio, occurrence of CO2-rich fluid inclusions in nearby W-Mo deposits and other surrounding geological characteristics. According to the data from 1986 to 2017, the depth of the water level of CO2-rich water was significantly lowered in the late period (2009-2015) than in the early period (1986-1992) of the development of hot spa wells, and the optimal yields for pumping tests also showed a tendency to gradual decrease. Concentrations of CO2 component also decreased continuously in the later stages compared to the early stages of development, but it has been stable since 2012. It is inferred that the geological environment related to forming W-Mo quartz vein deposits (0.5×1.5×several km) around the study area are largely involved in the origin and supply of CO2 component, and the supply of CO2 component is not infinitely supplied from deep current magma activity. Rather, since it is finitely supplied from a restricted subsurface region formed in the past geological period, it is necessary to efficiently control its use in order to maintain the sustainability of CO2-rich water in the study area.

Mesothermal Gold Mineralization in the Boseong-Jangheung area, Chollanamdo-province (전라남도 보성-장흥지역의 중열수 금광화작용)

  • 허철호;윤성택;소칠섭
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.379-393
    • /
    • 2002
  • Within the Boseong-Jangheung area of Korea, five hydrothermal gold (-silver) quartz vein deposits occur. They have the characteristic features as follows: the relatively gold-rich nature of e1ectrurns; the absence of Ag-Sb( -As) sulfosalt mineral; the massive and simple mineralogy of veins. They suggest that gold mineralization in this area is correlated with late Jurassic to Early Cretaceous, mesothermal-type gold deposits in Korea. Fluid inclusion data show that fluid inclusions in stage I quartz of the mine area homogenize over a wide temperature range of 200$^{\circ}$ to 460$^{\circ}$C with salinities of 0.0 to 13.8 equiv. wt. % NaCI. The homogenization temperature of fluid inclusions in stage II calcite of the mine area ranges from 150$^{\circ}$ to 254$^{\circ}$C with salinities of 1.2 to 7.9 equiv. wt. % NaCI. This indicates a cooling of the hydrothermal fluid with time towards the waning of hydrothermal activity. Evidence of fluid boiling including CO2 effervescence indicates that pressures during entrapment of auriferous fluids in this area range up to 770 bars. Calculated sulfur isotope composition of auriferous fluids in this mine area (${\delta}^34S$_{{\Sigma}S}$$\textperthousand$) indicates an igneous source of sulfur in auriferous hydrothermal fluids. Within the Sobaegsan Massif, two representative mesothermal-type gold mine areas (Youngdong and Boseong-Jangheung areas) occur. The ${\delta}^34S values of sulfide minerals from Youngdong area range from -6.6 to 2.3$\textperthousand$ (average=-1.4$\textperthousand$, N=66), and those from BoseongJangheung area range from -0.7 to 3.6$\textperthousand$ (average=1.6$\textperthousand$, N=39). These i)34S values of both areas are comparatively lower than those of most Korean metallic ore deposits (3 to 7TEX>$\textperthousand$). And, within the Sobaegsan Massif, the ${\delta}^34S values of Youngdong area are lower than those of Boseong-Jangheung area. It is inferred that the difference of ${\delta}^34S values within the Sobaegsan Massif can be caused by either of the following mechanisms: (1) the presence of at least two distinct reservoirs (both igneous, with ${\delta}^34S values of < -6 $\textperthousand$ and 2$\pm$2 %0) for Jurassic mesothermal-type gold deposits in both areas; (2) different degrees of the mixing (assimilation) of 32S-enriched sulfur (possibly sulfur in Precambrian pelitic basement rocks) during the generation and/or subsequent ascent of magma; and/or (3) different degrees of the oxidation of an H2S-rich, magmatically derived sulfur source ${\delta}^34S = 2$\pm$2$\textperthousand$) during the ascent to mineralization sites. According to the observed differences in ore mineralogy (especially, iron-bearing ore minerals) and fluid inclusions of quartz from the mesothermal-type deposits in both areas, we conclude that pyrrhotite-rich, mesothermal-type deposits in the Youngdong area formed from higher temperatures and more reducing fluids than did pyrite(-arsenopyrite)-rich mesothermal-type deposits in the Boseong-Jangheung area. Therefore, we prefer the third mechanism than others because the ${\delta}^34S values of the Precambrian gneisses and Paleozoic sedimentary rocks occurring in both areas were not known to the present. In future, in order to elucidate the provenance of ore sulfur more systematically, we need to determine ${\delta}^34S values of the Precambrian metamorphic rocks and Paleozoic sedimentary rocks consisting the basement of the Korean Peninsula including the Sobaegsan Massif.

Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea (한국 중부와 동남부지역 금·은광화작용의 성인적 특성)

  • Choi, Seon-Gyu;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.587-597
    • /
    • 1995
  • Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

  • PDF