Journal of the Korea Institute of Information Security & Cryptology
/
제32권6호
/
pp.1139-1150
/
2022
With the rapid development of SW Industry, softwares are everywhere in our daily life. The number of vulnerabilities are also increasing with a large amount of newly developed code. Vulnerabilities can be exploited by hackers, resulting the disclosure of privacy and threats to the safety of property and life. In particular, since the large numbers of increasing code, manually analyzed by expert is not enough anymore. Machine learning has shown high performance in object identification or classification task. Vulnerability detection is also suitable for machine learning, as a reuslt, many studies tried to use RNN-based model to detect vulnerability. However, the RNN model is also has limitation that as the code is longer, the earlier can not be learned well. In this paper, we proposed a novel method which applied BERT to detect vulnerability. The accuracy was 97.5%, which increased by 1.5%, and the efficiency also increased by 69% than Vuldeepecker.
Proceedings of the Korean Society of Computer Information Conference
/
한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
/
pp.65-68
/
2021
본 연구에서는 Dilated U-Net 기반의 이미지 복원기법을 통해 콘크리트 균열 추출 성능 개선 방안을 제안한다. 콘크리트 균열은 구조물의 미관상의 문제뿐 아니라 추후 큰 안전사고의 원인이 될 수 있어 초기대응이 중요하다. 현재는 점검자가 직접 육안으로 검사하는 외관 검사법이 주로 사용되고 있지만, 이는 정확성 및 비용, 시간, 그리고 안전성 면에서 한계를 갖고 있다. 이에 콘크리트 구조물 표면에 대해 획득한 영상 처리 기법을 사용한 검사 방식 도입의 관심이 늘어나고 있다. 또한, 딥러닝 기술의 발달로 딥러닝을 적용한 영상처리의 연구 역시 활발하게 진행되고 있다. 본 연구는 콘크리트 균열 추개선출 성능 개선을 위해 Dilated U-Net 기반의 이미지 복원기법을 적용하는 방안을 제안하였고 성능 검증 결과, 기존 U-Net 기반의 정확도가 98.78%, 조화평균 82.67%였던 것에 비해 정확도 99.199%, 조화평균 88.722%로 성능이 되었음을 확인하였다.
최근 자동차의 네트워크화와 연결성이 증가함에 따라, CAN(Controller Area Network) bus 의 설계상 취약점이 보안 위협으로 대두되고 있다. 이에 대응하여 CAN bus 의 취약점을 극복하고 보안을 강화하기 위해 머신러닝을 활용한 침입 탐지 시스템에 대한 연구가 필요하다. 본 논문은 XGBoost 를 활용한 비정상 분류 방법론을 제안한다. 고려대학교 해킹 대응 기술 연구실에서 개발한 데이터 세트를 기반으로 실험을 수행한 결과, 초기 모델의 정확도는 96%였다. 그러나 추가적으로 TimeDiff(발생 간격)과 DataDiff(바이트의 차분 값)을 모델에 통합하면서 정확도가 3% 상승하였다. 본 논문은 향후에 보다 정교한 머신러닝 알고리즘과 데이터 전처리 기법을 적용하여 세밀한 모델을 개발하고, 업체의 CAN Database 를 활용하여 데이터 분석을 보다 정확하게 수행할 계획이다. 이를 통해 보다 신뢰성 높은 자동차 네트워크 보안 시스템을 구축할 수 있을 것으로 기대된다.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
제38권6호
/
pp.635-644
/
2020
Object recognition, detection and instance segmentation based on DL (Deep Learning) have being used in various practices, and mainly optical images are used as training data for DL models. The major objective of this paper is object segmentation and building detection by utilizing multimodal datasets as well as optical images for training Detectron2 model that is one of the improved R-CNN (Region-based Convolutional Neural Network). For the implementation, infrared aerial images, LiDAR data, and edges from the images, and Haralick features, that are representing statistical texture information, from LiDAR (Light Detection And Ranging) data were generated. The performance of the DL models depends on not only on the amount and characteristics of the training data, but also on the fusion method especially for the multimodal data. The results of segmenting objects and detecting buildings by applying hybrid fusion - which is a mixed method of early fusion and late fusion - results in a 32.65% improvement in building detection rate compared to training by optical image only. The experiments demonstrated complementary effect of the training multimodal data having unique characteristics and fusion strategy.
Jong In Kim;Joo Young Lee;Jio Chung;Dae Jin Shin;Dong Hyun Choi;Ki Hong Kim;Ki Jeong Hong;Sunhee Kim;Minhwa Chung
Phonetics and Speech Sciences
/
제15권4호
/
pp.109-118
/
2023
Cardiac arrest is a critical medical emergency where immediate response is essential for patient survival. This is especially true for Out-of-Hospital Cardiac Arrest (OHCA), for which the actions of emergency medical services in the early stages significantly impact outcomes. However, in Korea, a challenge arises due to a shortage of dispatcher who handle a large volume of emergency calls. In such situations, the implementation of a machine learning-based OHCA detection program can assist responders and improve patient survival rates. In this study, we address this challenge by developing a machine learning-based OHCA detection program. This program analyzes transcripts of conversations between responders and callers to identify instances of cardiac arrest. The proposed model includes an automatic transcription module for these conversations, a text-based cardiac arrest detection model, and the necessary server and client components for program deployment. Importantly, The experimental results demonstrate the model's effectiveness, achieving a performance score of 79.49% based on the F1 metric and reducing the time needed for cardiac arrest detection by 15 seconds compared to dispatcher. Despite working with a limited dataset, this research highlights the potential of a cardiac arrest detection program as a valuable tool for responders, ultimately enhancing cardiac arrest survival rates.
Journal of the Korea Institute of Information Security & Cryptology
/
제25권4호
/
pp.961-974
/
2015
With the advancement of SIEM from ESM, it allows deep correlated analysis using huge amount of data. By collecting software's vulnerabilities from assessment with certain classification measures (e.g., CWE), it can improve detection rate effectively, and respond to software's vulnerabilities by analyzing big data. In the phase of monitoring and vulnerability diagnosis Process, it not only detects predefined threats, but also vulnerabilities of software in each resources could promptly be applied by sharing CCE, CPE, CVE and CVSS information. This abstract proposes a model for effective detection and response of software vulnerabilities and describes effective outcomes of the model application.
Kim, Jae-Hyup;Choi, Bong-Joon;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
Journal of the Korea Society of Computer and Information
/
제19권11호
/
pp.43-52
/
2014
In this paper, we propose the target detection method using image displacement, and classification method using SURF(Speeded Up Robust Features) feature points and BAS(Beam Angle Statistics) in infrared images. The SURF method that is a typical correspondence matching method in the area of image processing has been widely used, because it is significantly faster than the SIFT(Scale Invariant Feature Transform) method, and produces a similar performance. In addition, in most SURF based object recognition method, it consists of feature point extraction and matching process. In proposed method, it detects the target area using the displacement, and target classification is performed by using the geometry of SURF feature points. The proposed method was applied to the unmanned target detection/recognition system. The experimental results in virtual images and real images, we have approximately 73~85% of the classification performance.
Kim, Jong-Wang;Kim, Sang-Hyun;Jung, Hyun-Ju;Lee, Hyang-Beom
Proceedings of the KIEE Conference
/
대한전기학회 2015년도 제46회 하계학술대회
/
pp.700-701
/
2015
본 논문은 함정 피탐지 성능 개선을 위하여 함정의 효율적인 탈자 프로토콜 탐색 기법에 관한 연구를 하였다. 탈자 프로토콜은 정해진 장비와 시간내에서 영구자기장 성분을 최소화 해야하는 방법으로써 본 논문에서는 탈자 초기 전류와 탈자 종료 전류의 자화 방향을 이용하여 최적의 탈자 프로토콜을 탐색하는 기법에 대하여 연구하였다. 실험을 위해서 탈자 처리 시설을 제작하였으며, 실험의 오차를 줄이기 위하여 지구자기장을 보상하는 3축방향의 코일을 이용하였다. 실험 결과 초기 전류와 종료 전류의 자화방향을 이용하여 최적의 탈자 프로토콜을 탐색할 수 있었다.
Journal of the Korea Academia-Industrial cooperation Society
/
제22권5호
/
pp.34-41
/
2021
Sidewalks are facilities used for the safe and comfortable passage of pedestrians and are paved with blocks of various materials. Currently, Korea does not have a quantitative survey method for the pavement condition of sidewalks, so it is necessary to develop an efficient survey method. Drones are being used as an efficient survey tool in various fields, but there are limited studies in which sidewalks have been investigated. This study investigates the possibility of detection by limiting the missing sidewalk blocks using a drone. This study is an initial study on the development of a method for detecting damage in sidewalk blocks. For this, sidewalk blocks were artificially removed to simulate a dropout situation, and images were acquired with 0.7-cm resolution using a drone. As a characteristic of the point cloud data acquired through image pre-processing, there was high variance of the elevation of the points in the missing area of the sidewalk block. Using these characteristics, an experiment was conducted to detect the missing parts of the sidewalk block by applying four thresholds to the variance of the elevation of points included in the grid corresponding to the sidewalk area. As a result, the detection accuracy was shown with a positive detection ratio of 70-80%, omission errors of 20-30%, and commission errors lower than 2%. It is judged that the possibility of detecting missing sidewalk blocks is high. This study focused on detecting a simulated missing sidewalk block in a limited environment. Therefore, it is expected that an efficient and quantitative method of detecting damaged sidewalk blocks can be developed in the future through additional research with considerations of the actual environment.
As advances in information and communication technology have made it easier for anyone to produce and disseminate information, a new problem has emerged: fake news, which is false information intentionally shared to mislead people. Initially spread mainly through text, fake news has gradually evolved and is now distributed in multimedia formats. Since its founding in 2005, YouTube has become the world's leading video platform and is used by most people worldwide. However, it has also become a primary source of fake news, causing social problems. Various researchers have been working on detecting fake news on YouTube. There are content-based and background information-based approaches to fake news detection. Still, content-based approaches are dominant when looking at conventional fake news research and YouTube fake news detection research. This study proposes a fake news detection method based on background information rather than content-based fake news detection. In detail, we suggest detecting fake news by utilizing related video information from YouTube. Specifically, the method detects fake news through CNN, a deep learning network, from the vectorized information obtained from related videos and the original video using Doc2vec, an embedding technique. The empirical analysis shows that the proposed method has better prediction performance than the existing content-based approach to detecting fake news on YouTube. The proposed method in this study contributes to making our society safer and more reliable by preventing the spread of fake news on YouTube, which is highly contagious.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.