• Title/Summary/Keyword: 초기화염

Search Result 117, Processing Time 0.026 seconds

Flame Propagations of Gasoline-Air Mixtures by Electrostatic Discharge Energies (정전기 방전에너지에 따른 가솔린-공기 혼합물의 화염전파)

  • Park, Dal-Jae;Kim, Nam-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.6-10
    • /
    • 2011
  • Experimental studies were carried out to investigate the effects on flame propagation of gasoline-air mixtures by different electrostatic discharge energies in a cylindrical chamber. Three different ignition energies were used: 1 mJ, 50 mJ and 98 mJ. In this work, a high-speed particle image velocimetry technique was applied to visualize the flow-field around ignition electrodes. It was found that as the ignition energy increased, the ignition kernel was different. The different ignition kernel caused different flame initiation. During the flame initiation, the higher ignition energy was applied, the higher flame speed was observed. However, with increasing time, the flame speeds were independent of the ignition energies used. Theses observed flame behaviors were similar to computational simulations shown in the literature. It was also found that as the ignition energies increased, the velocities of unburnt mixtures ahead of propagating flame fronts increased.

Analysis of the Initial Combustion Period for the Ultra Lean Burn Engine (초희박연소기관을 위한 초기연소구간의 해석)

  • Han, S.B.;Lee, N.H.;Lee, S.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.45-53
    • /
    • 1995
  • 스파크 점화기관에서 화염전파과정에 관한 연구를 수행하기 위하여는, 초기화염핵 구간에서의 화염의 형성과 발달의 거동을 정확히 파악하여야 한다. 그러므로 화염핵의 형성과 발달에 영향을 미치는 최소 화염핵 크기의 이론적인 계산을 수행하였다. 이론식을 정립하기 위하여 열점화 이론을 이용하였다. 최소 화염핵 크기를 계산하기 위해 열전도 계수, 화염온도, 층류연소속도, 기타 열역학적 상태량 등을 계산하였다. 계산에 의존한 화염핵 크기의 신뢰성을 확인하기 위하여, 점화에너지를 변화시킬 수 있는 점화장치를 사용하여 실기 운전을 통하여 희박연소 한계가 그 때의 화염핵이 성정할 수 있는 영역이라고 가정하여 그 정확도를 확인 하였다.

  • PDF

Combustion Characteristics of Methane-Air Pre-mixture in a Closed Vessel(II) (밀폐용기내 메탄-공기 예혼합기의 연소특성(II))

  • 김봉석;이영재;고창조;권철홍
    • Journal of Energy Engineering
    • /
    • v.4 no.1
    • /
    • pp.85-94
    • /
    • 1995
  • 본 연구에서는 최근 차량용 대체연료로서 주목받고 있는 천연가스의 연소특성을 규명하기 위해 밀폐된 정적연소실을 이용, 당량비, 초기압력 및 점화위치 변화에 따른 연소실험을 행하였으며, 그 결과 다음과 같은 결론을 얻었다. 메탄-공기 예혼합기의 화염전파과정은 이론혼합기 부근에서 구면형으로 진행되는데 반해, 과농 또는 과박 혼합기 그리고 점화위치가 연소실 벽면에 가까울수록 타원형으로 진행되며, 초기압력이 증가함에 따라 화염전파는 느려진다. 화염전파속도와 연소 속도는 초기압력이 낮고 점화위치가 연소실 중심에 가까울수록 빠르며, 당량비 1.0∼1.1 사이에서 최대치를 보인다.

  • PDF

A Study on Impact of an Adjacent Structure by a Rocket Plume (유도탄 화염이 인접 구조물에 미치는 영향 연구)

  • Yang, Young-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.488-494
    • /
    • 2014
  • Rocket Plumes can cause serious damage to launch vehicles and adjacent structures. This paper describes the impact of an adjacent structure by a rocket plume. Each parameter related with dynamic behavior of a missile is modeled with probabilistic distributions of variables. Flyout analyses of initial behavior of a vertically launched missile are performed using Monte-Carlo simulation and flow-motion analyses were conducted by using CFD. In this way, when a missile is fired by a ship, the impact of an adjacent structure by a rocket plume was analyzed.

PIV Measurements on the Flame Initiation and Propagation under Gas Explosions by Electrostatic Discharge Energies in a Confined Chamber with an Obstacle (장애물이 있는 챔버 내부의 정전기 방전 에너지에 의한 가스 폭발시 초기화염과 화염전파 특성에 대한 PIV 계측)

  • Park, Dal-Jae;Lee, Seok-Hwan;Sung, Jae-Yong;Lee, Young-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.682-687
    • /
    • 2009
  • In order to investigate the effects of three different electrostatic discharge energies on gas explosions, a high-speed PIV system has been applied. The present study paid attention to the flame initiation by the gas explosions and its propagation at the existence of an obstacle within a chamber. Three different ignition energies such as 0.56 mJ, 52.87 mJ and 112.5 mJ were used. It is found that the ignition kernel is bent by the electrostatic discharge during the flame initiation. Tangential velocities of unburnt mixture ahead of initially propagating flame fronts are increased with increasing ignition energy, which makes the flame propagation faster before it reaches the obstacle. Although the flame speed was found to be less sensitive to the ignition energies, the flame developments were different. The effects of the energies on explosion pressures were also discussed.

Effect of Hydrogen Addition on Autoignited Methane Lifted Flames (자발화된 메탄 부상화염에 대한 수소 첨가의 영향)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

Combustion Characteristics of Orifice Size of Torch in a CVCC (토치 점화 장치의 오리피스 직경에 따른 연소특성 파악)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Choi, Chang-Hyeon;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.59-63
    • /
    • 2010
  • Seven different size of orifice were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The initial flame development and flame propagation were analyzed by the mass fraction burn and combustion enhancement rate. The combustion pressures were measured to calculate the mass fraction burn and the combustion enhancement rates. In addition, the flame propagations were visualized by the shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burned fraction were increased when using the torch-ignition device. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage.

  • PDF

Effects of an Ultrasonic Standing-wave Field on the Behavior of Methane/Air Premixed Flame (정상초음파장이 메탄/공기 예혼합화염의 거동에 미치는 영향)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo;Lee, Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.303-306
    • /
    • 2011
  • An experimental study has been conducted to investigate the effects of an ultrasonic standing-wave field to the behavior of methane/air premixed flame. Visualization technique utilizing the schlieren method was employed for the observation of premixed flame behavior. The shape of flame front and local flame velocity were measured according to the variation of reactants pressure and chamber opening/closing condition. The flame front was distorted and severely deformed to a lotus-type flame by the interaction of ultrasonic standing-wave and the reflection wave coming from an end wall of reactor.

  • PDF

A study on numerical analysis of the accidental gas explosion (수치해석에 의한 가스폭발사고 분석)

  • ;V.M.Poutchcov
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.145-152
    • /
    • 1998
  • 실내에서 가스폭발시 피해를 예측하기 위해서 폭발 화염면의 전파를 수치해석을 통해 해석했다. 확산방정식에 의해 가스누출에 의한 실내의 가스확산분포를 구했으며 문헌에서 선택한 누출의 초기조건을 사용했다. 화염온도를 계산하기 위해 각 가스 혼합비에 따른 엔탈피와 화학식에 대한 reduced mechanism을 사용했으며 문헌에서 찾은 각 가스의 농도별 층류 연소속도를 혼합가스의 층류연소속도에 적용시켰다. k-$\varepsilon$ 모델에서 turbulance energy를 층류연소속도와 결합시켜 난류화염 전파속도를 모델링 했다. 화염면의 전파를 분석하기 위해 실내의 위치에는 직각, 화염면의 전파에는 원통좌표계를 사용했다. 유리창의 파손에 의한 화염전파면의 변화에 따른 압력상승 요인을 해석하였으며 창문의 크기에 따라서 점화위치에 따른 실내 압력상승의 영향이 서로 다르게 나타나는 결과를 얻었다.

  • PDF

A Suggestion of the Hydrogen Flame Speed Correlation under Severe Accidents (중대사고시 수소연소에 의한 화염속도 상관식 제시)

  • Kang, Chang-Woo;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • The flame speed correlation considering thermal-hydraulic phenomena under severe accidents is proposed and correction coefficients are defined. This correlation modifies the pressure dependency in Iijima-Takeno correlation and adds the steam suppression effects to it in the anticipated hydrogen and steam concentration ranges under severe accidents. The existing models of flame speed due to hydrogen combustion under severe accidents are based on the experiments which were performed merely at room temperature and atmospheric pressure. They have difficulty in predicting a accurate flame speed in a case of high temperature and pressure during severe accidents. Thus the flame structure is assumed as a prerequisite to the reliable determination of flame speed and theoretical model is developed. To examine the validity, flame speeds in various conditions calculated by this model are compared with those obtained by the calculation of the existing correlations of the codes such as improved HECTR and MAAP. Also the steam suppression ratio is quantified and the steam suppression coefficient is defined as a composition of mixture. Initial temperature and pressure dependencies are investigated and correction coefficents are determined. More experimental studies can be recommended to improve this correlation to its further works.

  • PDF