• Title/Summary/Keyword: 초기탄성계수

Search Result 181, Processing Time 0.04 seconds

a-SiGe:H 박막의 고상결정화에 따른 주요 결험 스핀밀도의 변화

  • 노옥환;윤원주;이정근
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.78-78
    • /
    • 2000
  • 다결정 실리콘-게르마늄 (poly-SiGe)은 태양전지 개발에 있어서 중요한 물질이다. 우리는 소량의 Ge(x=0.05)으로부터 다량의 Ge(x=0.67)을 함유한 수소화된 비정질 실리콘-게르마늄 (a-SiGe:H) 박막의 고상결정화 과정을 ESR (electron spin resonance)방법으로 조사해보았다. 먼저 PECVD 방법으로 Corning 1737 glass 위에 a-Si1-xGex:H 박막을 증착시켰다. 증착가스는 SiH4, GeH4 가스를 썼으며, 기판온도는 20$0^{\circ}C$, r.f. 전력은 3W, 증착시 가스압력은 0.6 Torr 정도이었다. 증착된 a-SiGe:H 박막은 $600^{\circ}C$ N2 분위기에서 다시 가열되어 고상결정화 되었고, 결정화 정도는 XRD (111) peak의 세기로부터 구해졌다. ESR 측정은 상온 x-band 영역에서 수행되었다. 측정된 ESR스팩트럼은 두 개의 Gaussian 함수로써 Si dangling-bond와 Ge dangling-bond 신호로 분리되었다. 가열 초기의 a-SiGe:H 박막 결함들의 스핀밀도의 증가는 수소 이탈에 기인하고, 또 고상결정화 과정에서 결정화된 정도와 Ge-db 스핀밀도의 변화는 서로 깊은 상관관계가 있음을 알 수 있었다. 특히 Ge 함유량이 큰 박막 (x=0.21, 0.67)에서 뿐만 아니라 소량의 Ge이 함유된 박막(x=0.05)에서도 Ge dangling-bond가 Si dangliong-bond 보다 고상결정화 과정에서 더 중요한 역할을 한다는 것을 알수 있었다. 또한 초기 열처리시 Si-H, Ge-H 결합에서 H의 이탈로 인하여 나타나는 Si-dangling bond, Ge-dangling bond 스핀밀도의 최대 증가 시간은 x 값에 의존하였는데 이러한 결과는 x값에 의존하는 Si-H, Ge-H 해리에너리지로 설명되어 질 수 있다. 층의 두께가 500 미만인 커패시터의 경우에 TiN과 Si3N4 의 계면에서 형성되는 슬릿형 공동(slit-like void)에 의해 커패시터의 유전특성이 파괴된다는 사실을 알게 되었으며, 이러한 슬릿형 공동은 제조 공정 중 재료에 따른 열팽창 계수와 탄성 계수 등의 차이에 의해 형성된 잔류응력 상태가 유전막을 기준으로 압축응력에서 인장 응력으로 바뀌는 분포에 기인하였다는 사실을 확인하였다.SiO2 막을 약화시켜 절연막의 두께가 두꺼워졌음에도 기존의 SiO2 절연막의 절연 파괴 전압 및 누설 전류오 비교되는 특성을 가졌다. 이중막을 구성하고 있는 안티퓨즈의 ON-저항이 단일막과 비교해 비슷한 것을 볼 수 잇는데, 그 이유는 TiO2에 포함된 Ti가 필라멘트에 포함되어 있어 필라멘트의 저항을 감소시켰기 때문으로 사료된다. 결국 이중막을 구성시 ON-저항 증가에 의한 속도 저하 요인은 없다고 할 수 있다. 5V의 절연파괴 시간을 측정한느 TDDB 테스트 결과 1.1$\times$103 year로 기대수치인 수십 년보다 높아 제안된 안티퓨즈의 신뢰성을 확보 할 수 있었다. 제안된 안티퓨즈의 이중 절연막의 두께는 250 이고 프로그래밍 전압은 9.0V이고, 약 65$\Omega$의 on 저항을 얻을수 있었다.보았다.다.다양한 기능을 가진 신소재 제조에 있다. 또한 경제적인 측면에서도 고부가 가치의 제품 개발에 따른 새로운 수요 창출과 수익률 향상, 기존의 기능성 안료를 나노(nano)화하여 나노 입자를 제조, 기존의 기능성 안료에 대한 비용 절감 효과등을 유도 할 수 있다. 역시 기술적인 측면에서도 특수소재 개발에 있어 최적의 나노 입자 제어기술 개발 및 나노입자를 기능성 소재로 사용하여 새로운 제품의 제조와 고압 기상 분사기술의 최적화에 의한 기능성 나노 입자 제조 기술을 확립하고 2차 오염 발생원인 유기계 항균제를 무기계 항균제로 대체할 수 있다. 이와 더불

  • PDF

Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound (초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가)

  • Choi, Ha-Jin;Kim, Ryul-Ri;Lee, Jong-Suk;Min, Ji-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.56-64
    • /
    • 2021
  • Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facility performance evaluation (2020), the quality of cover concrete and the freeze-thaw (FT) repetition cycle were newly suggested for concrete durability assessment. The quality of cover concrete should be evaluated by the rebound hammer test and the FT repetition cycle should be also considered in the deterioration environmental assessment. This study suggested the application of fast dynamic based nonlinear ultrasound method to monitor initial micro-scale damage under freezing and thawing environment. Concrete specimens were fabricated with different water-cement ratios (40%, 60%) and air contents (1.5% and 3.0%). The compressive strength, rebound number, relative dynamic modulus, and nonlinear ultrasound were measured with different FT cycles. The scanning electron microscopy was also performed to investigate the micro-scale FT damage. As a result, both the rebound number and the relative dynamic modulus had difficulty to detect early damage but the proposed method showed a potential to detect initial micro-scale damage and predict the FT resistance performance of concrete.

Comparison of Water Potential Parameters in Aster scaber and Synurus deltoides Leaves Obtained from P-V Curves (P-V 곡선법에 의한 참취와 수리취의 수분포텐셜 비교)

  • Lee, Kyeong-Cheol;Jeon, Seong-Ryeol;Han, Sang-Sup
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.413-418
    • /
    • 2011
  • This study was carried out to establish a proper cultivation site and diagnose the drought-tolerance of Aster scaber and Synurus deltoides leaves by using Pressure-volume curves. In order to measure pressure-volume (P-V) curves, Aster scaber and Synurus deltoides were cut off above ground part and the tip of the cutting were placed in water, which was covered with a plastic bag. Samples were kept overnight (about 12 hours) in darkness at room temperature (20~25$^{\circ}C$) to achieve maximal turgor (full saturation). The pressure in the chamber was gradually increased from 0.3MPa to 1.8MPa by nitrogen gas. After measured, leaf samples were dried at 80$^{\circ}C$ for 48 hours and dry weight of each samples were determined. The result of the original bulk osmotic potential at maximum turgor ${\Psi}^{sat}_o$ sat was lower -0.8 MPa in Aster scaber leaves than -0.7 MPa Synurus deltoides leaves. Also the osmotic potential at incipient plasmolysis ${\Psi}^{tlp}_o$ in Aster scaber leave was -0.9 MPa. In contrast, the value of maximum bulk modulus of elasticity $E_{max}$ of Aster scaber leaves were approximately two folds higher than that of Synurus deltoides leaves. The values of the relative water content at incipient plasmolysis $RWC^{tlp}$ are all above 90% showing that the function of osmoregulation is somewhat better, and Vo/DW, Vt/DW, Ns/DW of Synurus deltoides leaves were approximately 1~2 times higher than that of Aster scaber leaves. Thus, responses to water relations of Aster scaber and Synurus deltoides such as ${\Psi}^{sat}_o$, ${\Psi}^{tlp}_o$, $E_{max}$, ${\Psi}_{P,max}$, $RWC^{tl}$ were shown that the Aster scaber leaves was slightly higher drought-tolerance than Synurus deltoides leaves. However, in both of Aster scaber and Synurus deltoides, occurring incipient plasmolysis at the high water content, have a relatively lower drought-tolerance property indicating that growth of these plants are cultivated appropriate in high moisture soil sites.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Prediction Model for Autogenous Shrinkage of High Strength Fly Ash Concrete (고강도 플라이 애쉬 콘크리트의 자기수축 예측 모델)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.134-142
    • /
    • 2003
  • Autogenous shrinkage, a significant contributor of early-age cracking of high strength concrete (HSC), must be avoided or minimized from an engineering point of view. Therefore, it is necessary to study how to reduce and to predict autogenous shrinkage with respect to tile control of early-age cracking. In this study, autogenous shrinkage of HSC with various water-binder ratio (W/B) ranging from 0.50 to 0.27 and fly ash content of 0, 10, 20, and 30% were investigated. Based on the test results, thereafter, a prediction model for autogenous shrinkage was proposed. Test results show that autogenous shrinkage increased and more rapidly developed with decreasing the W/B. Also, the higher fly ash contents, the smaller autogenous shrinkage. In particular, even if much autogenous shrinkage occurs at very early-ages, stress may not be developed while the stiffness of concrete is low. In order to consider the change of concrete stiffness, the transition time referred as stiffening threshold, was obtained by monitoring of ultrasonic pulse velocity evolution and considered in the autogenous shrinkage model. From a practical point of view, the proposed model can be effectively used to predict autogenous shrinkage and to estimate stress induced by autogenous shrinkage.

Studies on the Agroforestry Methods of Wild Edible Greens (IV) - Water Relations Parameters of Three Ligularia Species Leaves Obtained from P-V Curves - (산채류 산지농법 실용화 연구(IV) - P-V 곡선에 의한 곰취(Ligularia)속 3종의 수분특성 -)

  • Han, Sang-Sup;Lee, Kyeong-Cheol;Jeon, Seong-Ryeol
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.131-135
    • /
    • 2010
  • This study was carried out to establish a proper cultivation condition and diagnose the drought-tolerance of three wild edible greens belonging to genus of Ligularia by using pressure-volume curves methods. The result of the original bulk osmotic pressure at maximum turgor ${\Psi}_{\circ}{^{sat}}$ was -0.8 MPa in Ligularia fischeri and L. stenocephala, which was somewhat lower than the value, -0.7 MPa, in L. fischeri var. spiciformis. In addition, the values of the osmotic pressure at incipient plasmolysis ${\Psi}_{\circ}{^{tlp}}$ in L. fischeri and L. stenocephala, both of which were -0.9 MPa, These were slightly lower than that of -0.8 MPa in L. fischeri var. spiciformis. On the other hand, it appeared that the values of maximum bulk modulus of elasticity $E_{max}$ of L. fischeri and L. stenocephala were approximately two times higher than that of L. fischeri var. spiciformis. However, There was a distinct difference between the values of the relative water contents in these three species. Therefore, Ligularia spp, occurring incipient plasmolysis in the high water contents, have a relatively low property of drought-tolerance, suggesting that growth of those Ligularia spp. are appropriate for relative moisture forest.

Water Relations Parameters of Rhododendron micranthum Turcz. from P-V Curves (P-V곡선에 의한 꼬리진달래(Rhododendron micranthum Turcz.)의 수분특성)

  • Kim, Nam-Young;Lee, Kyeong-Cheol;Han, Sang-Sub;Park, Wan-Geun
    • Korean Journal of Plant Resources
    • /
    • v.23 no.4
    • /
    • pp.374-378
    • /
    • 2010
  • Determining plant moisture characteristics is an essential study not only for cultivation, but also for ex-situ conservation. In this study, employing pressure-volume curve we examined moisture characteristics of Rhododendron micranthum, known as rare plant, with the aim of its ex-situ conservation. Several individuals growing in Mt. Worak, Youngwol-gun Yeonha-ri and Bongwa-gun Seokpo-ri were selected for this study, from which we collected leaves. The original bulk osmotic pressure at maximum turgor(${{\Psi}_o}^{sat}$)was -1.5 MPa in those of Mt. Worak and Seokpo-ri, which is somewhat lower than that of Yeonha-ri(-1.2 MPa). It appeared that the osmotic pressure at incipient plasmolysis(${{\Psi}_o}^{tlp}$) of leaves collected in both Mt. Worak and Seokpo-ri were -1.29 MPa, and -1.26 MPa, respectively, which are lower than that of Yeonha-ri(-1.02MPa). Maximum bulk modulus of elasticity($E_{max}$) was 14.0 MPa, 8.67 MPa in leaves collected from both Seokpo-ri and Mt. Worak, respectively, those value of which were approximately 3 times higher than that of Yeonha-ri(4.00 MPa). The values of $RWC_{tlp}$(Relative water content at incipient plasmolysis) of leaves collected in three areas, were roughly 83%, suggesting that Rhododendron micranthum has relatively high capability of containing water. Our finding on moisture characteristics of Rhododendron micranthum is similar to those of other Rhododendron spp. We suggest that individuals growing in both Worak and Seokpo-ri, are preferable to those in Yeonha-ri for ex-situ transplantation since those individuals are found to have better drought resistance.

Age Dependent Behaviors of Composite Girders Subjected to Concrete Shrinkage and Creep (건조수축과 크리프에 의한 합성형 거더의 재령종속적 거동)

  • Ahn, Sung-Soo;Sung, Won-Jin;Kang, Byeong-Su;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.109-116
    • /
    • 2006
  • An incremental approach to predict the time dependent flexural behavior of composite girder is presented in the framework of incremental finite element method. Age dependent nature of creep, shrinkage, and maturing of elastic modulus of concrete is prescribed in the incremental tangent description of constitutive relation derived based on the first order Taylor series expansion applying to the total from of stress-strain relation. The loop phenomenon in which age dependent nature of concrete causes stress redistribution and it causes creep in turn is taken into account in the formulation through the incremental representation of constitutive relation. The developed algorithm predicts the time dependent deflections of 4.8m long two span double composite box girder subjected to shrinkage, maturing of elastic modulus, and creep initially induced by self weight. Comparison shows a good agreement between the predicted and measured results.

A Study on the Side Impact Characteristics Occurred from SUV-to-Passenger Car using LS-DYNA (LS-DYNA를 이용한 SUV와 승용차의 측면충돌 특성에 대한 연구)

  • Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.217-226
    • /
    • 2018
  • Since the sides of a vehicle are designed asymmetrically unlike its front or rear, the degree of deformation of the car body greatly differs depending on the site of collision if a broadside collision takes place. When elastic deformation and plastic deformation occur in the car body occur due to a collision, the kinetic energy is absorbed into the body, and the momentum decreases. Generally, an analysis of traffic accidents analyzes the vehicle's behavior after a collision by the law of momentum conservation and corrects the error of the amount of energy absorption due to the deformation of the car body, applying a restitution coefficient. This study interpreted a finite element vehicle model applying the structure of the car body and the material properties of each part with LS-DYNA, analyzed the result and drew the restitution coefficient and the depth of penetration according to the contact area of the vehicle in a broadside collision between an SUV and a passenger car. When the finally calculated restitution coefficient and depth of penetration were applied to the examples of the actual traffic accidents, there was an effect on the improvement of the error in the result. It was found that when the initial input value, drawn using the finite element analysis model, it had a higher reliability of the interpretation than that of the existing analysis techniques.

Determination of shear wave velocity profiles in soil deposit from seismic piezo-cone penetration test (탄성파 피에조콘 관입 시험을 통한 국내 퇴적 지반의 전단파 속도 결정)

  • Sun Chung Guk;Jung Gyungja;Jung Jong Hong;Kim Hong-Jong;Cho Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.125-153
    • /
    • 2005
  • It has been widely known that the seismic piezo-cone penetration test (SCPTU) is one of the most useful techniques for investigating the geotechnical characteristics including dynamic soil properties. As the practical applications in Korea, SCPTU was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTU waveform data obtained from the testing sites, the first arrival times of shear waves were and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity profiles (VS) were derived based on the refracted ray path method based on Snell's law and similar to the trend of cone tip resistance (qt) profiles. In Incheon area, the testing depths of SCPTU were deeper than those of conventional down-hole seismic tests. Moreover, for the application of the conventional CPTU to earthquake engineering practices, the correlations between VS and CPTU data were deduced based on the SCPTU results. For the empirical evaluation of VS for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification Index (IC), the authors suggested the VS-CPTU data correlations expressed as a function of four parameters, qt, fs, $\sigma$, v0 and Bq, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the down-hole seismic test during SCPTU and the conventional CPTU, it is shown that the VS-CPTU data correlations for all soils clays and sands suggested in this study is applicable to the preliminary estimation of VS for the Korean deposits and is more reliable than the previous correlations proposed by other researchers.

  • PDF