• Title/Summary/Keyword: 초기재령 압축강도

Search Result 187, Processing Time 0.031 seconds

A Study on Manufacture standardization of High Strength Concrete to Use Moderate Heat Portland Cement (벨라이트계 시멘트를 이용한 고강도 콘크리트 제조표준화에 관한 연구)

  • Park, Cheol;Kim, Dong-Suck;Um, Tai-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.665-668
    • /
    • 2008
  • Recently the city construction and the concrete structures are more becoming extra weight and the efficient use of the space by the population intensively and follow in industrial intensive commerce and the residence commerce composition building which leads the high story of the building. Consequently the high rise of the building which space applies efficiently in objective which will increase continuously. Also with high rise of buildings durability it will be able to increase the life of the structure is emphasized and the concrete structure is demanding the more high strength.

  • PDF

An experimental study on performance of concrete with constituent materials of shotcrete (숏크리트 구성 재료에 따른 콘크리트 성능에 관한 실험적 연구)

  • Kim, Sang-Myung;Shin, Jin-Yong;Ma, Sang-Jun;Nam, Kwan-Woo;Kim, Ki-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.59-68
    • /
    • 2008
  • The experiment was carried out to investigate the influence of coarse aggregate, admixture, and accelerator on the properties of concrete. As the maximum size of coarse aggregate decreased from 13 mm to 8 mm, fluidity of fresh concrete declined but compressive strength and dynamic modulus of elasticity of hardened concrete increased remarkably. The mechanical properties of concrete substituted silica fume to the plain concrete improved, the compressive strength of that substituted blast furnace slag increased slightly. The hydration reaction and compressive strength of specimen with sodium luminate type accelerator were high at initial, but specimen with alkali free type accelerator improved largely in 28 days.

  • PDF

A Study on Long-Term Mechanical Properties and Durability in Metakaolin Concrete Bridge Deck (메타카올린 콘크리트 교량바닥판의 장기 역학적 특성 및 내구성에 관한 연구)

  • Yang, Eun Ik;Kim, Myung Yu;Yang, Joo Kyoung;Park, Hae Geun;Choi, Yoon Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.125-133
    • /
    • 2011
  • The requirement for durability of concrete bridge deck is increasing as the deterioration for the concrete bridge deck exposed to severe environment has been increased. For this reason, the concern about high-durable concrete is being high. Recently, a metakaolin is highly spotlighted as new admixture because its strength and durability are equivalent to silica fume. On the other hands, there are few researches for the metakaolin concrete bridge deck in domestic. So many various long-term data on the mechanical property and durability is needed to apply metakaolin concrete at the concrete bridge deck construction field. This study is aim to evaluate the long-term mechanical properties and durability of metakaolin concrete bridge deck with curing age. Mechanical properties are estimated by the compressive and flexural strength, and the drying shrinkage, the chloride resistance, the scaling, and freezing and thawing characteristics are compared with curing age. According to the results, when the metakaolin concrete is used, the development of compressive and flexural strength proceed in both the early and old ages. It is also improved the resistance of chloride penetration, freezing and thawing in concrete. It was showed that replacement of metakaolin was efficient for the reduction of the drying shrinkage.

The Characteristics of Strength of Development and Hydration Heat on High Volume Fly-Ash Concrete (플라이애쉬 치환율이 높은 콘크리트의 강도 발현 및 수화열 특성)

  • Park, Chan-Kyu;Lee, Seung-Hoon;Kim, Han-Jun;Kim, Sang-Jun;Lee, Tae-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.417-420
    • /
    • 2008
  • In this study, the characteristics of strength development and hydration heat on high volume fly ash concrete(HVFAC) was experimentally investigated. Two levels of W/B were selected. Seven levels of fly ash replacement ratios and two levels of silica fume replacement ratios were adopted. In the concrete mix, the water content of $125kg/m^3$ was used, which is less than that of usual water content. As a result, it appeared that the compressive strength gradually decreased with increasing fly ash replacement ratio at the early age, but the difference of strength up to replacement ratio of 50% was little at the age of 91 days because of the pozzolanic reaction of fly ash. The effect of hydration heat reduction on the concrete was affected by the fly ash replacement ratio. When the replacement ratio was over 30%, the reduction efficiency of hydration heat was large.

  • PDF

Strength Characteristics of 3D Printed Composite Materials According to Lamination Patterns (적층 패턴에 따른 3D 프린팅 복합재료의 강도특성)

  • Seo, Eun-A;Lee, Ho-Jae;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.193-198
    • /
    • 2021
  • In this study, the rheological characteristics and of 3D printing composite materials and the compressive strength characteristics according to the lamination patterns were evaluated. As a result of rheology test, rapid material change was observed after 60 minutes of extrusion, yielding stress 1.4 times higher than immediately after mixing, and plastic viscosity was 14.94-25.62% lower. The compressive strength of the specimens manufactured in the mold and the laminated specimens were compared, and the lamination pattern of the laminated specimens were 0°, 45°, and 90° as variables. The compressive strength of the mold casting specimen and the laminated specimen from 1 to 28 days of age showed similar performance regardless of the lamination pattern. In particular, at the age of 28 days, the modulus of elasticity, maximum compressive strength, and strain at maximum stress of all specimens were almost the same. In order to analyze the interface of the laminated specimens, X-ray CT analysis of the specimen whose compressive strength were measured was performed. Through CT analysis, it was confirmed that cracks did not occur at the lamination interface, which can be judged that the interface in the laminated specimen behaved in an integrated manner.

Models for Hydration Heat Development and Mechanical Properties of Ultra High Performance Concrete (초고성능 콘크리트의 수화발열 및 역학적 특성 모델)

  • Cha, Soo-Won;Kim, Ki-Hyun;Kim, Sung-Wook;Park, Jung-Jun;Bae, Sung-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Concrete has excellent mechanical properties, high durability, and economical advantages over other construction materials. Nevertheless, it is not an easy task to apply concrete to long span bridges. That's because concrete has a low strength to weight ratio. Ultra high performance concrete (UHPC) has a very high strength and hence it allows use of relatively small section for the same design load. Thus UHPC is a promising material to be utilized in the construction of long span bridges. However, there is a possibility of crack generation during the curing process due to the high binder ratio of UHPC and a consequent large amount of hydration heat. In this study, adiabatic temperature rise and mechanical properties were modeled for the stress analysis due to hydration heat. Adiabatic temperature rise curve of UHPC was modeled superposing 2-parameter model and S-shaped function, and the Arrhenius constant was determined using the concept of equivalent time. The results are verified by the mock-up test measuring the temperature development due to the hydration of UHPC. In addition, models for mechanical properties such as elastic modulus, tensile strength and compressive strength were developed based on the test results from conventional load test and ultrasonic pulse velocity measurement.

Pore Structures and Mechanical Properties of Early Frost Damaged Concrete using Electric Arc Furnace Slag as Aggregate (초기동결 피해를 받은 전기로 산화 슬래그 혼입 콘크리트의 공극 구조 및 역학적 특성)

  • Lee, Won-Jun;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.68-77
    • /
    • 2020
  • The purpose of the paper is to evaluate the pore structure and mechanical properties of early frost damaged concrete using electric arc furnace slag as aggregate. From the results, when the concrete is exposed to frost damage at an early age, the peak point of pores 100 to 150 ㎛ in diameter were transferred into larger one. When the freezing duration is not exceeded 24 hours, it is possible that the pore distribution of under the 200 ㎛ is maintained and pore size of over 500 ㎛ is not formed, and, the freezing resistance of concrete using EFG could be improved. When BFS was mixed in concrete using EFG as coarse aggregate, the relative strength is higher than that of natural coarse aggregate. Meanwhile, the elastic modulus and resonance frequency did not change significantly due to the early frost damage as compared with the compressive strength. So, it is necessary to analyze the correlation between the experimental results in order to evaluate the performance degradation due to early frost damage.

Evaluation of Chloride Ion Penetration Resistance of High Calcium Silicate Cement Concrete (High Sulfated Calcium Silicate 시멘트 콘크리트의 염소이온침투저항성 평가)

  • Jeong, Seok-Man;Yang, Wan-hee;Kim, Hyeon-Soo;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2022
  • The aim of this work was to a comparative review the performance of high calcium silicate cement (HSCSC) and that of ordinary Portland cement(OPC) and blast furnace slag cement(S/C). The result of the compressive test confirmed that the compressive strength development rate of high calcium silicate cement concrete at the age of 3 days was 73.6% that of ordinary Portland cement concrete. However, at the age of 28 days, the strength development rate of high calcium silicate cement increased to about 107.0% compared to ordinary Portland cement. In addition, the test of the chloride ion penetration resistance of concrete showed that at the age of 28 days, the passed charge decreased by 73.4% and 93.0%, respectively, in blast furnace slag cement and high calcium silicate cement compared to ordinary Portland cement, and at the age of 56 days, it decreased by 79.1% and 98.3%, exhibiting excellent resistance to chloride ion penetration. In particular, it was confirmed that the rate of decrease in the passed charge with age was higher in high calcium silicate cement than in ordinary Portland cement and blast furnace slag cement.

The Characteristics of Compressive Strength in Mortar with Internal Curing According to Curing Condition (내부양생을 적용한 모르타르의 양생조건에 따른 압축강도 특성)

  • Kim, Joo-Hyung;Cho, Young-Keun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2018
  • The use of high-strength concrete in construction have been increasing steadily. However, high-strength concrete has a low water-binder ratio, and the problems such as cracks due to hydration heat and shrinkage during the hydration process at the early age. Recently, as a method to reduce the shrinkage of concrete, study of internal curing has carried out according to increasing about interest about it. In this study, the effect of compressive strength on the curing condition(drying, moist, water) was investigated by using artificial lightweight aggregate(LWA) in high strength and high volume mortar. As a result of autogenous shrinkage, the effect of shrinkage reduction was enhanced depending on the increasing of LWA replacement. According to the curing condition, the results of compressive strength showed the different trend. The compressive strength has increased on the drying and moisture condition and decreased on the water condition.

A Study on the Fundamental Properties of Ultra Rapid Hardening Mortar using Coal-Ash (잔골재 대체재로서 석탄회를 이용한 초속경 보수모르타르의 기초적 특성에 관한 연구)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, fundamental properties of URHM on temperature condition of construction field were performed. Test result, URHM of three types for fluidity and setting time were as in the following : B > C > A. Those for low temperatures were later than the standard condition. Compressive, bending and bond strength were similar with three types as follow. In compressive strength, initial strength of the low were smaller than the standard but the low in the long-term were similar with the standard. On the contrary to this, bending strength were similar in initial strength but the low in the long-term were smaller than the standard. The low in bond strength was average 35% less than the standard. Length changes was as in the following : A > C > B. the low is two times much as the standard but the case using blast furnace slag particles noticeably reduced length changes. Water absorption coefficient and water vapor resistance were as in the following : C > A > B. In case of URHM added bottom ash, water absorption coefficient and water vapor resistance were increased because bottom ash is porous material.

  • PDF