• Title/Summary/Keyword: 초기재령 압축강도

Search Result 187, Processing Time 0.029 seconds

A Fundamental Study on Early Compressive Strength Improvement of the Blast Furnace Slag Cement Mortar Using the Fine Particle Cement and Gypsum (석고 및 미분시멘트에 의한 고로슬래그 미분말 치환 시멘트 모르타르의 초기강도 향상에 관한 기초적 연구)

  • Han, Cheon-Goo;No, Dong-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.90-97
    • /
    • 2009
  • The purpose of the study was to examine basic property at the time of applying cast ('CS' below) and high fineness fine particle cement ('FC' below) as a stimulant to 20% substitution cement mortar of ground granulated blast-furnace slag ('BS' below) to settle a problem that early strength of BS mortar is lowered. The results were as follows. First of all, as a characteristic of fresh mortar, liquidity was reduced as much as BS substitution rate was increased. When substituting CS for BS 20%, it didn't have a large effect regardless of substitution rate. When substituting FC, it was reduced as much as substitution was increased. In the event of compressive strength, it was reduced as much as BS substitution was increased in early age. In age 28, it was somewhat increased by reflection of potential hydraulicity. With regard to improvement of early compressive/bending strength of BS 20% substitution mortar, when substituting CS, in early age, they were a little increased as much as addition rate was increased. When substituting FC, in early and 28 age, they were largely increased as much as substitution rate was increased. To settle a problem that early strength of BS 20% substitution mortar was lowered, CS substitution has a little effect and FC 25% substitution was similar to plain with only OPC. Therefore, when substituting FC 25%, it is expected that its quality will be improved.

  • PDF

Experimental Study on the Evaluation of frost-Resistance of High-Strength Concrete Damaged by frost at Early Age in Cold Climates (동절기 초기재령에서 동해를 받은 고강도콘크리트의 내동해성 평가에 관한 실험적 연구)

  • 권영진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.139-145
    • /
    • 2001
  • One of ways to make high-strength concrete is for the mix contain particles graded down to the finest size : this is achieved by the use of fly ash, silica fume which fills the spaces between the cement particle and between the aggregate and the cement particles. And, the mix needs a sufficient workability. This is achieved by the use of a superplasticizer. This study is to investigate frost resistance of high-strength concrete at early age, with ratio of tensile strength and recovery of compressive strength, when high-strength concrete is placed in cold climates. According to this study, it is necessary to ensure 4 % of air content, 5 kgf/$\textrm{cm}^2$ of tensile strength, at least, for frost resistance of high-strength concrete at early age.

An Experimental Study on the Quality of Mortar Mixed with Tapioca Starch (타피오카 전분을 혼합한 모르타르의 품질에 관한 실험적 연구)

  • Yong Jic Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.244-250
    • /
    • 2023
  • In this paper, mortar mixed with tapioca starch was manufactured to evaluate the effect of tapioca starch on mortar, through evaluating the quality characteristics of mortar, the impact of tapioca starch on improving the performance and basic quality of mortar was examined. Tapioca starch tended to decrease flow by increasing the viscosity of the dough consistency of fresh mortar, which tended to reduce flow, and decreased by about 10 % as the tapioca starch mixing ratio increased by 0.025 %. In addition, the effect of tapioca starch on the compressive strength of mortar was at the same level regardless of the tapioca starch mixture at 28 days of age. However, at an early age of 3 days, the speed of compressive strength development was accelerated by mix ing tapioca starch. In addition, the effect of tapioca starch on the compressive strength of mortar was at the same level regardless of the tapioca starch mixture at 28 days of age. However, at an early age of 3 days, the speed of compressive strength development was accelerated by mixing tapioca starch. The speed of strength development improved by about 20 % when mixing 0.050 % tapioca starch. The adhesion strength improved by about 60 % when mixing 0.050 % tapioca starch, and the final shrinkage in length change decreased by 5 %.

The Analysis of Fundamental Property for Developing High Performance Concrete of Ternary System (3성분계 고성능 콘크리트 개발을 위한 기초 특성 분석)

  • Park, Byung-Kwan;Choi, Sung-Yong;Kim, Soo-Yung;Kim, Bok-Kyu;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.805-808
    • /
    • 2008
  • This study analyzed the basic characteristics of concretes to develop 3 ingredients high performance concrete that displaced BS and FA, and the results are as follows. As part of fresh concrete characteristics, the flow was shown more increase than OPC with increase in admixture material displacement rate, and air amount tended to decrease with increase in admixture displacement rate. As hardened concrete characteristics, compressive strength decreased below OPC at early age with increase in BS and FA displacement rate, however at age 28 days, it was similar to OPC or increased above that. Particularly, at B30F15 with age 28 days, its compressive strength was about 15% higher than OPC

  • PDF

Fundamental Properties of Mortar and Concrete Using High Calcium Fly Ash (고칼슘 플라이애시를 활용한 모르타르 및 콘크리트의 기초적 물성)

  • Lee, Min-Hi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.284-291
    • /
    • 2016
  • To evaluate the properties of inorganic composites using a great quantity of high-calcium fly ash generated in combined heat and power plants, high-calcium fly ash and F-class fly ash commonly used as concrete admixtures were substituted with binding materials to examine changes of fluidity and compressive strength depending on the substitution ratio for each curing temperature. According to the experimental result, CFA-mixed mortar showed a tendency to reduce its flow unlike FFA-mixed mortar as the substitution ratio was increased, but its flow loss showed smaller than FFA as time passed. As a result of examining compressive strength depending on mixing FA, FFA-mixed mortar had an optimum range within 50% when curing at ambient temperature, but it was found that the compressive strength is reduced when mixing CFA. When curing at high temperature, FFA did not relatively have a great effect on the substitution ratio, but CFA could expect a strength enhancement effect compared with 100% of OPC when using within 25% of binding materials.

Engineering Properties of Synthetic Lightweight Aggregate Concrete Affected by Alkali-Silica Reaction (알카리-실리카 반응(反應)에 의한 인공경량골재(人工輕量骨材)콘크리트의 공학적(工學的) 성질(性質))

  • Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.1
    • /
    • pp.33-40
    • /
    • 1991
  • This study was performed to obtain the basic data applied to use of synthetic lightweight aggregate concrete affected by alkali silica reaction. The results obtained were summarized as follows; 1. The compressive strength of type A concrete was increased with increase of curing age. At the curing age 28 days, the highest compressive strength was showed at type Band C concrete, respectively. But, it was gradually decreased with increase of curing age at those concrete. 2. The flexural strength of type A concrete was increased with increase of curing age. At the curing age 14 days, the highest flexural strength was showed at type Band C concrete, respectively. But, it was gradually decreased with increase of curing age at those concrete. 3. The correlation between compressive and flexural strength of the sample was shown highly significant only at type A concrete. 4. It was shown that the water absorptions of the type Band C were 7.0-7.8 times higher than the type A concrete. It was significantly higher at the early stage of immersed time at all sample. 5. The correlation between compressive strength and water absorption of the sample was significant only at the type A concrete.

  • PDF

Pull-out Resistance Characteristics of the Anchor Bar According to the Grouting Material (주입재료에 따른 Anchor Bar의 인발저항 특성)

  • Yea, Geu-Guwen;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.227-232
    • /
    • 2008
  • In this study, the pull out resistance characteristics of an anchor bar to support a spillway installed in a slope are investigated by field tests. The injection materials were a cement mortar and cement milk. Unconfined compression strengths of those materials under several conditions were measured. As the result of compression test, the unconfined compression strengths of the cement mortar and the cement milk have positive proportional relation-ship with the water-cement ratio. They also have negative proportional relationship with increasing the curing time. In the same condition of water-cement ratio and curing time, the unconfined compression strength of cement milk is larger than that of cement mortar. In order to reduce the eccentricity in anchor bar during pull-out test in the field, the installation apparatus was improved by inserting a nut type of steel fixing coupling into the anchor bar. As the result of the pull-out test, the strength modification of cement milk was increased steeply at the early curing time. However, that of cement mortar was increased gradually with passing the curing time. Therefore, the cement milk has to use as the injection material for a prompt construction of anchor bar because the strength modification of cement milk is occurred at the early curing time.

Properties of Autogenous Shrinkage according to Hydration Heat Velocity of High Strength Concrete Considering Mass Member (매스부재를 고려한 고강도콘크리트의 수화발열상승속도 조절에 따른 자기수축 특성)

  • Koo, Kyung-Mo;Kim, Gyu-Yong;Hong, Sung-Hyun;Nam, Jeong-Soo;Shin, Kyoung-Su;Khil, Bae-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.369-376
    • /
    • 2012
  • In this study, to reduce the hydration heat velocity (HHV) of high-strength mass concrete at early ages, phase change materials (PCM) that could absorb hydration heat were applied, and the changes in autogenous shrinkage were investigated, as well as the relationship between the hydration temperature and autogenous shrinkage. The acceleration of the cement hydration process by the PCM leads to an early setting and a higher development of the compressive strength and elastic modulus of concrete at very early ages. The function of PCM could be worked below the original melting point due to the eutectic effect, while the hydration temperature and HHV of high-strength mass concrete can be decreased through the use of the PCM. A close relationship was found between the hydration temperature and autogenous shrinkage: the higher the HHV, the greater the ultimate autogenous shrinkage.

ing Durometer D type Evaluation of the possibility of Estimatingon of Setting Time and InitialEarly aAge Compressive Strength Using Durometer D type Durometer (D형 Durometer를 이용한 콘크리트의 미장용 모르타르의 응결시간 및 초기재령 압축강도 추정)

  • Han, Soo-Hwan;Han, Jun-Hui;Hyun, Seung-Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.57-58
    • /
    • 2021
  • This study is conducted an experiment to unifyprovide a method to estimate the method of measuring the condensationsetting time and estimating the initialearly age compressive strength using the existingD type ddurometer. into a single device and to adopt the best estimation guidelines of the estimator. As a result of the experiment, Test results indicated that it is analyzed that the use of D type Durometer attached with modified needle, which was designed to secure improved accuracy in setting and compressive strength, enables to estimate it is possible to estimate the condensationsetting time of mortar and estimate the compressive strength ofat early age. the initial age when the estimation No. 2 is adopted for the Durometer D type.

  • PDF

An Experimental Study on the Strength Development of High Strength Concrete in Various Curing Conditions at an Early-age (초기 양생조건에 따른 고강도 콘크리트의 강도발현에 관한 실험적 연구)

  • Kwon, Yeong-Ho;Lee, Tea-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • This study is experimentally investigated the effects of various steam curing parameters on the early-age compressive strength development of high strength concrete (over 40 MPa) in the precast plant production. High strength concrete are used only ordinary portland cement (type I) and water-cement ratio selected 3cases (25%, 35% and 45%). Also, steam curing parameters are as followings ; (1) Preset period 2cases (3 hours and 6 hours) (2) Maximum curing temperature 3cases ($45^{\circ}C$, $55^{\circ}C$ and $65^{\circ}C$) (3) Maintenance time of curing temperature 3cases (4 hours, 6 hours and 8 hours) (4) Maximum rate of heating and cooling $15^{\circ}C$/hr. Initial setting time and adiabatic temperature rising ratio of these concrete according to water-cement ratio are tested before main tests and examined the compressive strength development for the steam curing parameters. Also compressive strength are compared with optimum steam curing condition and standard curing at test ages. As test results, the optimum steam curing conditions for high strength concrete(over 40 MPa) are as followings. (1) Preset period ; over initial setting time of concrete (2) Maximum curing temperature ; bellow $55^{\circ}C$ (3) Maintenance time of curing temperature ; bellow 6hours. Also strength development of steam curing concrete show in the reversed strength at 28 days. It is to propose an efficient steam curing condition for high strength concrete in the precast method.