• Title/Summary/Keyword: 초기재령 압축강도

Search Result 187, Processing Time 0.022 seconds

A Study on the Effect of Calcium-Chloride Content on the Strength of Mortar (염화(鹽化)칼슘의 함량(含量)이 Mortar의 강도(强度)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Sung, Chan-Yong;Kang, Sin-Up
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.185-191
    • /
    • 1979
  • Compressive and tensile strengths of commonly being used mortar and mortar specially hardened by adding 1%, 2% and 3% of $CaCl_2$ were compared under the different mixing ratio of mortar and ages to investigate the effect of $CaCl_2$ which is being used as a promotor for coagulation and hardness, on the strength of mortar. The results obtained were as follows: 1. The compressive strength of mortar hardened by addition of $CaCl_2$ was higher than that of commonly being used mortar. The highest compressive strength of mortar was obtained when 2% of $CaCl_2$ were added. 2. The tensile strength of mortar, which was made by adding $CaCl_2$ and aged for seven days, was higher than that of commonly being used mortar. The highest tensile strength of mortar was obtained when 1% of $CaCl_2$ was added and aged for 28 days. And the tensile strength of mortar with 2% of $CaCl_2$ was lower than that of commonly being used mortar. 3. When the amount of $CaCl_2$ added was higher than 3%, the mortar was abruptly hardened and thereby occurred crack was considered lowering strength of mortar. 4. The rich mix was effective for the increasing the compressive and tensile strength before seven days of age and less effective after seven days of age. Therefore, the addition of one to two per cent of $CaCl_2$ would be effective for promoting initial strength of mortar during winter season.

  • PDF

Physical Effect of Adding Stone Dust Sludge on the Properties of Cement Mortar (석분슬러지 혼입이 시멘트 모르타르 특성에 미치는 물리적 영향)

  • Seo, Jun-Yeong;Choi, Seon-Jong;Kang, Su-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.152-158
    • /
    • 2015
  • In order to investigate the feasibility of stone dust sludge as fine aggregate, an experimental study was performed on cement mortar with stone dust sludge. fresh mortar properties and strength with various stone dust sludge replacement ratios were estimated. the replacement ratio adopted in this study was 0, 10, 20, 30%. Flow, air content, and rheological properties were considered as properties of fresh mortar. Compressive strength and flexural tensile strength were measured for strength. The results are as follows. Higher amount of stone dust sludge caused reduction in slump and air content. In the rheological properties, both yield stress and plastic viscosity increased as stone dust sludge content increased up to 20% replacement ratio, but there were no remarkable difference between 20 and 30%. Yield stress increased drastically between 10 and 20%. Compressive and flexural tensile strength results indicated that the strength variation was not significant according to stone dust sludge content, but the strength gain in the early age by adding stone dust sludge was evident. the strength at the age of 28 days however did not show noticeable effect of adding stone dust sludge.

Long-term strength of shotcrete with improved C12A7 based mineral accelerator (개량형 C12A7계 광물계 급결제를 사용한 숏크리트의 장기강도 평가)

  • Won, Jong-Pil;Hwang, Un-Jong;Lee, Su-Jin;Lee, Jae-Ho;Jang, Seok-Bu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.135-148
    • /
    • 2014
  • This study was performed to evaluate the performance about Improved C12A7 based mineral accelerator (ICM) increased in initial and long-term strength. ICM was developed to overcome the long-term strength decrease in existing accelerator. To evaluate the performance of ICM according to addition rate, setting time, compressive strength, and flexural strength tests were conducted in laboratory. In results, initial setting time was slower, final setting time was faster than existing $C_{12}A_7$ based mineral accelerator (CM) when usage of ICM 6%. In compressive and flexural strength, existing CM was higher than ICM at 3hours and 1day. After 7days, strength of shotcrete using ICM was increased. Rebound test, compressive strength and flexural strength test with optimum addition rate through the laboratory test were conducted in field. Field experiment results were the same as laboratory test. Long-term strength performance of ICM was superior to existing accelerator.

Fundamental Properties of Porous Concrete According to the Sizes of Aggregate (골재 크기에 따른 포러스콘크리트의 기초물성에 관한 실험적 연구)

  • 김무한;백용관;강석표;김용로;김재환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.438-446
    • /
    • 2001
  • Recently, porous concrete has been used for the purpose of decreasing the load of earth environment. It consists solely of cement, water and uniform-sized coarse aggregate. And its fundamental properties will be considerably affected by the physical properties of aggregate because the aggregate occupies for the most part in its mix proportion. For such a reason, this study was carried out to investigate the influence of the sizes and kinds of aggregate for the fundamental properties of porous concrete. It showed that the fundamental properties of porous concrete were the similar value in all sizes of aggregate except in the case of using the 2.5∼5㎜ aggregate and were varied according to the kinds of aggregate. In particular, compressive strength of porous concrete using 2.5∼5㎜ aggregate was more higher than that using other aggregate, and its void ratio and coefficient of permeability was lower. And the maintenance capacity of permeability of porous concrete was varied by the sizes and the kinds of aggregate. In particular, it was greatly decreased in case of using the 2.5∼5㎜ aggregate. And unlike dynamic modulus of elasticity of ordinary concrete, that of porous concrete was very high value in early ages and was slowly increased after that time.

The Effects of Na2CO3 on Early Strength of High Volume Slag Cement (대량치환 슬래그 시멘트의 초기강도에 미치는 Na2CO3의 영향)

  • Kim, Tae-Wan;Hahm, Hyung-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.349-356
    • /
    • 2016
  • This report presents the results of an investigation on the early strength development of pastes high volume slag cement (HVSC) activated with different concentration of sodium carbonate ($Na_2CO_3$). The ordinary Portland cement (OPC) was replaced by ground granulated blast furnace slag (GGBFS) from 50% to 90% by mass, the dry powders were blended before the paste mixing. The $Na_2CO_3$ was added at 0, 2, 4, 6, 8 and 10% by total binder (OPC+GGBFS) weight. A constant water-to-binder ratio (w/b)=0.45 was used for all mixtures. The research carried out the compressive strength, ultrasonic pulse velocity (UPV), water absorption and X-ray diffraction (XRD) analysis at early ages(1 and 3 days). The incase of mixtures, V5 (50% OPC + 50% GGBFS), V6 (40% OPC + 60% GGBFS) and V7 (30% OPC + 70% GGBFS) specimens with 6% $Na_2CO_3$, V8 (20% OPC + 80% GGBFS) and V9 (10% OPC + 90% GGBFS) specimens with 10% $Na_2CO_3$ showed the maximum strength development. The results of UPV and water absorption showed a similar tendency to the strength properties. The XRD analysis of specimens indicated that the hydration products formed in samples were CSH and calcite phases.

Hydration-Setting Property of β-Hemihydrate Gypsum by Adding of Accelerator and Ground Gypsum (경화촉진제 및 마쇄 이수석고 첨가에 의한 β-반수석고의 수화응결 특성)

  • Choi, Jeong-Bong;Kim, Jong-Pal
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.822-829
    • /
    • 1997
  • When $Al_2(SO_4)_3$ as an accelerator was added to $\beta$-hemihydrate gypsum, the setting time, mobility and compressive strength properties of $\beta$-hemihydrate gypsum were examined with the adding of two types grounded gypsum crushed by ball mill. By 15wt% adding of 7% $Al_2(SO_4)_3$ dilute solution, the setting time of $\beta$-hemihydrate gypsum was sharply accelerated than that of non-added $\beta$-hemihydrate gypsum. When ground phospho gypsum(PG) and chemical gypsum(CG) were added to $\beta$-hemihydrate gypsum, the initial and final setting time of $\beta$-hemihydrate gypsum were accelerated markedly with the increasing of grinding time and added amount of ground phospho gypsum. Especially, this trend largely presented when ground phospho gypsum was added to $\beta$-hemihydrate gypsum. The compressive strength of $\beta$-hemihydrate gypsum added by ground phospho and chemical gypsum was largely increased at initial curing time such as 1, 3 days. Particularly, the compressive strength of $\beta$-hemihydrate gypsum added by ground phospho gypsum was increased by 15~20% than that of ground chemical gypsum.

  • PDF

Mechanical Properties of Early Strength Mortar with Ground Granulated Blast Furnace Slag and Expansive Additive (고로슬래그미분말 및 팽창재를 혼입한 조강형 모르타르의 역학적 특성)

  • Koo, Kyung-Mo;Choi, Jae-Won;You, Byeong-Know;Cha, Wan-Ho;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.177-184
    • /
    • 2021
  • In this study, the effects of ground granulated blast furnace slag(GGBFS) and expansive additive(EA) on early strength mortar were examined for the purpose of reducing carbon and improving cement performance. As a result, ealry strength Portland cement(EPC) tended to decrease in flow compared to ordinary Portland cement(OPC), but binder with EPC and GGBFS was possible to obtain higher liquidity than OPC. EPC showed higher compressive strength and shrinkage than OPC. The compressive strength of specimen with EPC and GGBFS was reduced proportionally to the replacement ratio of GGBFS. The replacement ratio of GGBFS above the compressive strength equivalent to OPC was higher under low temperature conditions. The use of GGBFS resulted in high shrinkage compared to OPC, and this characteristic was even greater under low temperature conditions. The shrinkage of specimen with EA was decreased in early ages, but was higher than the OPC in long-term ages.

One-way ANOVA Analysis to Verify the Effect of Hybrid Strength Estimators by Number of Measurements (일원분석을 통한 하이브리드 추정계의 측정횟수별 영향검증)

  • Han, Soo-Hwan;Hu, Yun-Yao;Kim, Su-Ho;Lim, Gun-Su;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.37-38
    • /
    • 2022
  • This study is attempted to propose an appropriate number of measurements by checking and statistically analyzing the change in hardness according to the number of measurements. As a result, there was no significant difference between the 20th and 30th data, and in the 10th case, the effect on errors occurring during measurement was found to be dominant. Therefore, as the number of measurements, proposing 20 times in consideration of the convenience of use. In addition, in order to minimize the effect on the measurement error, it is proposed to remeasure the surface mane of the measurement surface and the test value in which the error occurs on the average of the test values.

  • PDF

Determination of Removal Time of the Side Form in High Strength Concrete (고강도콘크리트 시공시 측면 거푸집 탈형시기의 결정)

  • Han Cheon-Goo;Han Min-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.327-334
    • /
    • 2004
  • In this paper, method for the determination of removal time of the side forms in high strength concrete are discussed using the estimation model of compressive strength development, the development of bond strength and rebound number of P type Schmidt hammer in order to review the validity of existing regulation as to side form removal and offer effective quality control method. According to the results, as W/B increases by $10\%$, the setting time is shortened by about 2 hours. In the scope of the paper, required time to gain 8MPa of compressive strength is determined about 17 ${\~}$20 hours of age and $21{\~}25^{\circ}D{\cdot}D$ of maturity. Bond strength between form and concrete shows the highest value around final setting time, but decreases drastically after that. Amount of concrete sticking on the form is large before setting completed, but after that, its amount shows decline tendency. The rebound value test with P type schmidt hammer can be started faster by 2${\~}$3 hours than compressive strength test. It is also confirmed that the removal of forms is possible when the rebound value of P type schmidt hammer is more than 32. It is found from the results that existing regulation regarding removal time of the side form of high strength concrete provided in KCI needs no revision because required time to gain the strength provided in KCI has no adverse effect on strength development at early age and surface condition during stripping the side form. Effective procedure to decide the removal time of side form can be performed by applying P type Schmidt hammer.

Hydration and Compressive Strength of High-volume Fly Ash Cement Paste (하이볼륨 플라이애시 시멘트 페이스트의 수화 및 압축강도 특성)

  • Hwang, Chul-Sung;Moon, Eun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.156-162
    • /
    • 2017
  • Recently, researches on High-Volume Fly ash Cement(HVFC), which is replacing high portion of cement to fly ash, have been actively conducted to reduce $CO_2$ formation. Though HVFC has various advantages, low strength development in early ages is pointed out as the biggest problem in the application of fly ash. In order to overcome such limitations, this study investigated the hydration and compressive strength characteristics of HVFC paste depending on the fly ash content with the mixing ratio varying from 0 to 80 %. Experimental results show that the HVFC paste with low water-binder ratio can overcome the limitation of low compressive strength at early ages. Also, from the result of heat flow delay, 50 % of fly ash weight ratio was the critical point of the filler effect.