DOI QR코드

DOI QR Code

Hydration and Compressive Strength of High-volume Fly Ash Cement Paste

하이볼륨 플라이애시 시멘트 페이스트의 수화 및 압축강도 특성

  • 황철성 (가천대학교 토목환경공학과) ;
  • 문은진 (한국건설생활환경시험연구원)
  • Received : 2017.07.28
  • Accepted : 2017.08.14
  • Published : 2017.09.01

Abstract

Recently, researches on High-Volume Fly ash Cement(HVFC), which is replacing high portion of cement to fly ash, have been actively conducted to reduce $CO_2$ formation. Though HVFC has various advantages, low strength development in early ages is pointed out as the biggest problem in the application of fly ash. In order to overcome such limitations, this study investigated the hydration and compressive strength characteristics of HVFC paste depending on the fly ash content with the mixing ratio varying from 0 to 80 %. Experimental results show that the HVFC paste with low water-binder ratio can overcome the limitation of low compressive strength at early ages. Also, from the result of heat flow delay, 50 % of fly ash weight ratio was the critical point of the filler effect.

국내 시멘트 산업은 시멘트 제조 시 발생되는 $CO_2$를 감축하기 위해 $CO_2$발생의 주요 요인인 클링커 대신 시멘트 대체재료 사용을 확대하기 위한 다양한 기술 개발을 위해 노력하고 있다. 이에, 최근 플라이애시를 다량 치환한 하이볼륨 플라이애시 시멘트(HVFC)에 대한 연구 가 활발히 진행되고 있다. 하지만, 플라이애시의 다양한 장점에도 불구하고 낮은 조기강도 발현 특성이 플라이애시를 다량으로 활용한 바인더의 현장적용에 있어서 가장 큰 문제로 지적되고 있다. 본 연구는 이러한 한계를 극복하고자 플라이애시 혼입률에 따른 HVFC 페이스트의 수화 및 압축강도 특성을 파악하기 위해, 플라이애시 혼입률 0~80%의 배합을 이용하여 실험을 수행하였다. 실험결과 낮은 물-바인더 비에 의한 HVFC 페이스트 배합은 초기 재령에서의 낮은 압축강도의 한계점을 극복할 수 있을 것으로 판단된다. 또한 중량비의 50% 이상이 플라이애시로 치환된 페이스트의 응결시간이 증가하는 경향을 보아, 플라이애시 중량비 50%는 충진 효과의 임계점으로 판단된다.

Keywords

References

  1. Baert, G., Hoste, S., De Schutter, G., and De Belie, N. (2008), Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry, Journal of Thermal Analysis and Calorimetry, 94(2), 485-492. https://doi.org/10.1007/s10973-007-8787-z
  2. Bentz, D. P. (2006), Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations, Cement and Concrete Research, 36(2), 238-244. https://doi.org/10.1016/j.cemconres.2005.04.014
  3. Dali Bondar and Eoin Coakley. (2014), Use of gypsum and CKD to enhance early age strength of High Volume Fly Ash (HVFA) pastes, Construction and Building Materials, 71, 93-108. https://doi.org/10.1016/j.conbuildmat.2014.08.015
  4. De Weerdt, K., Haha, M. Ben, Le Saout, G., Kjellsen, K.O., Justnes, H., and Lothenbach, B. (2011), Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash, Cement and Concrete Research, 41(3), 279-291. https://doi.org/10.1016/j.cemconres.2010.11.014
  5. Fraay, A.L.A., Bijen, J.M., and Dehaan, Y.M. (1989), The reaction of fly ash in concrete - a critical examination, Cement and Concrete Research, 19(2), 235-246. https://doi.org/10.1016/0008-8846(89)90088-4
  6. Hou, P.-k., Kawashima, S., Wang, K.-j., Corr, D. J., Qian, J.-S., and Shah, S. P. (2013), Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar, Cement and Concrete Research, 35(1), 12-22. https://doi.org/10.1016/j.cemconcomp.2012.08.027
  7. Lam, L., Wong, Y.L., and Poon, C.S. (2000), Degree of hydration and gel/space ratio of high-volume fly ash/cement systems, Cement and Concrete Research, 30(1), 747-756. https://doi.org/10.1016/S0008-8846(00)00213-1
  8. Langan, B.W., Weng, K., and Ward, M. A. (2002), Effect of silica fume and fly ash on heat of hydration of Portland cement, Cement and Concrete Research, 32(7), 1045-1051. https://doi.org/10.1016/S0008-8846(02)00742-1
  9. Lawrence, P., Cyr, M., and Ringot, E. (2003), Mineral admixtures in mortars - Effect of inert materials on short-term hydration, Cement and Concrete Research, 33(12), 1939-1947. https://doi.org/10.1016/S0008-8846(03)00183-2
  10. Moon, G.D., Oh, S., and Choi, Y.C. (2016), Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar, Construction and Building Materials, 124, 1072-1080. https://doi.org/10.1016/j.conbuildmat.2016.08.148
  11. Nocun-Wczelik, W. (2001), Heat evolution in hydrated cementitious systems admixtured with fly ash, Journal of Thermal Analysis and Calorimetry, 65(2), 613-619. https://doi.org/10.1023/A:1017970228316
  12. Rahhal, V., and Talero, R. (2004), Influence of two different fly ashes on the hydration of portland cements. Journal of Thermal Analysis and Calorimetry, 78(1), 191-205. https://doi.org/10.1023/B:JTAN.0000042167.46181.17
  13. Sengul, O., Tasdemir, C., and Tasdemir, M. A., (2005), Mechanical properties and rapid chloride permeability of concretes with Ground fly ash, ACI Materials Journal, 102(6), 474-482.
  14. Yilmaz, B. and Olgun, A. (2008), Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone, Cement and Concrete Composites, 30(3), 194-201. https://doi.org/10.1016/j.cemconcomp.2007.07.002
  15. Zhang, L., Ninomiya, Y., and Yamashita, T. (2006), Formation of submicron particle matter (PM1) during coal combustion and influence of reaction temperature, Fuel, 85(10-11), 1446-1457. https://doi.org/10.1016/j.fuel.2006.01.009