• 제목/요약/키워드: 초기변위

Search Result 464, Processing Time 0.032 seconds

A Study on function of Artificial Reef by Using Geotexile Tube (토목섬유를 활용한 인공리프의 기능에 관한 연구)

  • Shin, Moon-Seup;Ahn, Kyung-Soo;Shin, Eun-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.623-631
    • /
    • 2003
  • A large scale hydrological laboratory model tests for the geotextile tube were conducted to investigate the stability of geotextile tube and the capability of breakwater with variations of significant wave height, percentage of soil filling, and the water level above geotextile tube. The sliding displacement of geotextile tube is measured to check the stability of geotextile tube for given the various significant wane heights. The marked mash was laid out at the bottom of water channel to measure the displacement of geotextile tube. The bench mark was furnished in the upper part of water channel and the initial location was marked every 10cm interval to measure the displacement of geotextile tube. The wane transmit ratios are analyzed with the variations of soil filling of tube and of the top crown height wave above the geotextile tube in order to study the performance of brekwater before and after the installation of geotextile tube.

A Study on Earthquke Damage Estimation of Non Precede Designed Reinforced Concrete Apartment in Korea (국내 비내진 설계 철근콘크리트 아파트에 대한 지진피해 예측 연구)

  • Kwon, Ki-Hyuk;Ko, Yong-Bum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.95-105
    • /
    • 2005
  • Korea is located away from plate boundaries which are not safe from earthquakes. However, having witnessed the large-scale earthquake in the Tangshan region in 1976 deemed as a safe plate, it should not be assured that Korea is absolutely safe from earthquakes. In addition, many seismologists have claimed that there indeed is a high possibility of earthquakes above mid scale that would occur in Korea. Because it is impossible to prevent earthquake, studies on seismic design and earthquake disaster control system are widely being conducted. However, studies on early response to earthquakes or recovery process are still very limited, and only a few studies for establishing earthquake damage evaluation system are being conducted. Thus, this study aimed to present essential data for establishing earthquake damage evaluation system that takes into account the real situation of structures in Korea. In this study, a nonseimically reinforced concrete apartment structure in Gangnamgu was selected as an standard type of such structures and its earthquake damage was estimated. The result of damage evaluation based on the derivation of vulnerability function and realtive story displacement was compared to that abtained using HAZUS Program Vulnerability Function.

Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection (합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동)

  • Kang, Suk Bong;Lee, Kyung Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2007
  • The seismic responses of a building are affected by the connection characteristics that have effects on structural stiffness. In this study, push-over analysis and time history analysis were performed to estimate structural behavior of 2D eight-story unbraced steel structures with partially restrained composite connections using a nonlinear dynamic analysis program. Nonlinear $M-{\theta}$characteristics of connection and material inelastic characteristics of composite beam and steel column were considered. The idealization of composite semi-rigid connection as fully rigid connection yielded an increase in initial stiffness and ultimate strength in the push-over analysis. In time history analysis, the stiffness and hysteretic behavior of connections have effects on base-shear force, maximum story-drift and maximum moment in beams and columns. For seismic waves with PGA of 0.4 g, the structure with the semi-rigid composite connections shows the maximum story-drift with less than the life safety criteria by FEMA 273 and no inelastic behavior of beam and column, whereas in the structure with rigid connections, beams and columns have experienced inelastic behaviors.

Model Tests for the Damage Assessment of Adjacent Buildings in Urban Excavation (흙막이굴착에 따른 인접건물의 손상평가에 대한 모형실험연구)

  • Kim, Hak-Moon;Hwang, Eui-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.121-131
    • /
    • 2007
  • This study is to investigate the damage assessment of adjacent structures due to excavation in urban environment. Model tests were carried out for 2 story masonry building and frame structures in various shapes and locations. The damage level of adjacent structures were very differently estimated in accordance with the shape ratio (L/h) of structures, construction stages, and various locations. Therefore the most weak part (bay) of structure must be heavily instrumented and monitored in more details at early stage of constructions. The progressive crack development mechanism at various construction stages was revealed through model tests and crack size indicated more conservative side of damage level on the damage level graph.

Effects of Strength Reduction Factors for Capacity Spectrum Analysis of Bridge Structures using Inelastic Demand Spectrum (비탄성 요구도 스펙트럼을 이용한 교량구조물의 역량스펙트럼 해석에 대한 강도감소계수의 영향)

  • Song, Jong-Keol;Jin, He-Shou;Jang, Dong-Hui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.25-37
    • /
    • 2008
  • The capacity spectrum method (CSM) is a simple and graphical seismic analysis procedure. Originally, it has been developed for buildings, but now its applicability has been extended to bridge structures. It is based on the capacity curve estimated by pushover analysis and demand spectrum reduced from linear elastic design spectrum by using effective damping or strength reduction factor. In this paper, the inelastic demand spectrum as the reduced demand spectrum is calculated from the linear elastic design spectrum by using the several formulas for the strength reduction factor. The effects of the strength reduction factor for the capacity spectrum analysis are evaluated for 3 types of symmetric and asymmetric bridge structures. To investigate an accuracy of the CSM which several formulas for strength reduction factor were applied, the maximum displacements estimated by the CSM are compared with the results obtained by nonlinear time history analysis for 8 artificially generated earthquakes. The maximum displacements estimated by the CSM using the SJ formula among the several strength reduction factors provide the most accurate agreement with those calculated by the inelastic time history analysis.

Effects of Design Parameters on Structural Performance of Precast Piers with Bonded Prestressing Steels (부착 긴장재를 가진 조립식 교각 설계변수의 구조성능에 미치는 영향)

  • Shim, Chang-Su;Yoon, Jae-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.15-26
    • /
    • 2010
  • Quasi-static tests were conducted to evaluate structural performance of precast piers prestressed by bonded prestressing steels. Combinations of prestressing bars and normal reinforcing bars, embedded steel tubes and prestressing strands were used as continuous steels crossing the joints of a precast pier. Main design parameters were steel ratio, magnitude of prestress force, and section details. Flexural strength and energy dissipation capacity of precast columns with higher steel ratio showed better performance due to continuous steels after opening of the joints. Precast piers with embedded members showed stable behavior after reaching maximum loads resulting in higher displacement ductility and energy dissipation capacity increased as the introduced prestress increased. Self-centering behavior at early stages and stress increase of confining reinforcements were observed from highly prestressed columns. Combination of prestressing steels and normal reinforcing bars should be used in design to prevent rapid strength degradation after reaching the maximum load.

Performance Evaluation of Organic and Inorganic Fiber Reinforced Concrete in Tunnel Lining Structure (유·무기 섬유 혼입 터널 라이닝 콘크리트 부재의 성능 평가)

  • Lee, Jong-Eun;Kim, Tae-Won;Kim, Su-Man;Jeon, Joong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.110-118
    • /
    • 2009
  • The tunnel structure is widely used for transportation in the mountain area. To reduce the duration of construction and thus the expense, a tunnel excavation is often performed simultaneously with a tunnel lining in in-situ. However, cracking of the tunnel lining may occur arising from the vibrating impact in the excavation process. The present study concerns the role of steel fiber and nylon fibers in tunnel lining concrete to reduce the vibrating impact. As a result it was found that both the nylon fiber and steel fiber improved the durability and physical properties of concrete.

An Experimental Study on Dynamic Behavior Evaluation of Transitional Track (접속부 궤도의 동적거동분석을 위한 실험적 연구)

  • Cho, Sung-Jung;Choi, Jung-Youl;Chun, Dae-Sung;Kim, Man-Cheol;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1379-1385
    • /
    • 2007
  • In domestic transitional zone design, there is regulation to prevent generation of irregular substructure behaviors that negatively influence in prevention of plasticity settlement on approach section and contact section as well as relieve overall track rigidity by reducing sectional foundation and track stiffness difference, but design guideline that considers dynamic behavior of transitional track in actual service line is very insignificant. Therefore in this study, characteristics of transitional track dynamic behaviors by substructure stiffness are researched and measured dynamic response of transitional track by substructure stiffness in order to prove correlation between substructure and track and calculate elasticity(stiffness) and track load of transitional track by using measurement and formula to provide basic information for developing design guideline considering dynamic behavior of service line transitional track.

  • PDF

Effect of temperature and moisture on curling of early age concrete slabs (재령 초기 콘크리트 슬래브의 컬링에 미치는 온도와 수분의 영향)

  • Sun, Ren-Juan;Nam, Young-Kug;Hong, Seung-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.105-115
    • /
    • 2008
  • It is known that the long-term behavior and performance of jointed concrete pavement due to slab curling are affected by the environmental factors such as temperature, moisture, and so on. However, any relationships between the curling and its factors have not been defined clearly yet because of insufficient detailed investigation. The temperature, relative humidity, strain, vertical displacement of a concrete slab, and horizontal movement of its transverse joints were investigated by various sensors and devices instrumented in the slab of a concrete pavement section constructed for this study. The constraint of the curling by joint stiffness was investigated in addition to effect of the temperature and moisture on the early aged concrete slab by analyzing the field data measured for approximately 4days from concrete placement. The curling of the concrete slab showed 24hour cycles mainly because of the temperature effect, and the upward curling gradually increased because of the long-term effect of drying shrinkage of the concrete. The magnitude and variation of the curling were significantly affected by the joint stiffness which is comprised of aggregate interlocking and other factors. The effect of the variation of the seasonal joint stiffness varying with the temperature and long-term drying shrinkage on the slab curling will be investigated as a further study.

  • PDF

A Study for Characterization on Shallow Behavior of Soil Slope by Flume Experiments (토조실험 장치를 이용한 토사비탈면 표층거동 특성 연구)

  • Suk, Jae-wook;Park, Sung-Yong;Na, Geon-ha;Kang, Hyo-Sub
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.489-499
    • /
    • 2018
  • A flume experiments was used to study the characteristics of the surface displacements and volumetric water contents (VWC) during torrential rain. The surface displacement and VWC of the granite weathered soil were measured for rainfall intensity (100, 200 mm/hr) and initial ground condition (VWC 7, 14, 26%). The test processes were also recorded by video cameras. According to the test results, The shallow failure is classified into three types: retrogressive failure, progressive failure and defined failure. In the case of retrogressive failure and progressive failure, relatively large damage could occur due to the feature that soil is deposited to the bottom of the slope. the shallow failure occurred when the VWC reached a certain value regardless of the initial soil condition. It was found that the shallow failure can be predicted through the increase patton of the VWC under the condition of the ground dry condition (VWC 7%) and the natural condition (VWC 14%). For high rainfall intensity, progressive failure predominated, and rainfall intensity above a certain level did not affect wetting front transition.