• Title/Summary/Keyword: 초기기업 가치평가

Search Result 29, Processing Time 0.027 seconds

A Study on the Supporting System for Growth Stage of Startup (창업기업의 성장단계별 지원체계에 관한 연구: 국내외 유니콘 기업의 사례 비교)

  • Lee, Jae-Seok;Lee, Ki-Ho;Lee, Sang-Myung
    • Korean small business review
    • /
    • v.43 no.1
    • /
    • pp.165-186
    • /
    • 2021
  • Startups are undergoing a change throughout the growth process of startups that appear in existing studies as they move away from the existing B2B or B2C frame and expand their target customer groups to O2O, C2C. In this regard, a new type of startup known as unicorns, a unicorn which has grown rapidly in a short period of time, is being created by successfully attracting government support and external investment in recognition of the potential value of the startup. This study examined the relationship between investment attraction and growth after founding for five representative unicorns in the U.S. and Korea. As a result, it was found that private investment in Korea is passive and defensive, and is attracted after the Series A stage, compared to the U.S., where the growth potential of the startup ecosystem is positively evaluated. In addition, it found that government's support policy throughout the startup's growth process is an abstract and comprehensive policy focusing on initial funding for startups. Therefore, it was suggested that the scope of government policies should be expanded to forster startups as unicorns, and that it is necessary to establish and implement differentiated support policies for each growth of the scale-up of startups. This study is significant in that it presented the criteria for the growth stage and support of startups as well as policy support for scale-up through practical case analysis of unicorns.

Utilizing Indoor Farm (Plant factory) to Develop Rare Resource Plants (회귀 자원식물 개발을 위한 Indoor Farm(식물공장) 활용)

  • Lee Kyu Ha
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.5-5
    • /
    • 2020
  • 일반적으로 식물의 공급방법은 채집과 재배로 나눌 수 있으며, 자원식물은 상용화를 위해는 안정적 공급이 선행되어야 하므로 재배를 선호하고 있다. 재배방식은 다시 노지재배, 시설재배, Indoor Farm(식물공장)으로 나눌 수 있으며, 우리나라는 시설재배 중 비닐하우스 활용이 활발한 나라로 평가된다. 노지재배에 비해서는 시설재배가 온/습도 관리에 대해 장점을 가지고 있으며, Indoor Farm(식물공장)은 광량, 광질 및 일조시간까지 전체 생육조건의 조절이 가능하지만 초기투자비용 및 운영비용 등으로 인해 경제성이 낮아 아직까지는 상용되고 있지 않다. 자원식물의 경우 부가가치가 높아지는 후방사업으로 발달할 수 있으나, 화장품, 기능식품 또는 의약품으로 개발하기 위해서는 일정한 품질을 확보하여야 한다. 자원식물 재배 시 특정 성분의 함량을 일정하게 유지하기 위해서는 온/습도, 광량, 광질 등 생육환경을 관리할 수 있는 시설재배가 노지재배에 비해 적합하다. 하지만, 일부 자원식물의 경우에는 위도, 일조량 등으로 인해 국내에서는 시설재배로도 적절한 생육조건을 제공할 수 없어서 상업화하지 못한 경우가 많았다. 이에, (주)넥스트온은 Indoor Farm(식물공장) 전문기업으로서, 기존 자원식물 중 국내에서 시설재배로는 적절한 품질 확보가 불가했던 자원식물 및 특수 생육환경에서만 자생하는 희귀 자원식물의 양산화에 노력하고 있다.

  • PDF

Evaluation of Capability for Practicing CM at Risk in Korea (국내 시공책임형 건설사업관리 수행을 위한 기업 역량 평가)

  • Ryu, HanGuk;Lee, Sangwon;Choi, Jaehyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.2
    • /
    • pp.79-87
    • /
    • 2020
  • The Korean domestic construction management at risk (CMAR) market is in the process of completing the pilot project execution under the leadership of the Ministry of Land, Infrastructure and Transport as of December 2019. The government starts practicing CMAR an alternative delivery method widely in order to diversify delivery methods and enhance construction technology. The CMAR market is thus expected to grow. This study was conducted to improve CMAR firms' capability by developing self-assessment tools for them to evaluate current capability more effectively. As a result of defining standard core capability and additional elements categorized by project execution phase and management area, and performing evaluation from the CMAR project participants, it was found that the general project management capability in the pre-design and procurement phase and quality management area was lower compared to the construction phase and other areas. In addition, the capability of cost management area was lower in spite of its high importance. Communication and coordination, process optimization, and target values achievement were at the initial level of capability and continuous improvement was required.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Study on Operating System Improvements to the Competitiveness of Busan Port (부산항 경쟁력 강화를 위한 운영체제 개선에 관한 연구)

  • Seo, Su-Wan
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.4
    • /
    • pp.191-208
    • /
    • 2018
  • This paper focuses on the integration aspect of operators to determine an improvement strategy for the operating system to enhance competitiveness of Busan Port. This Study proposes the following alternatives: valuation standards for the integration of operators, the road map for the integration period, the scope and role setting of integrated operators' participation of Busan Port Authority(BPA), and the separation and linkage North Port and the New Port operators. First, the valuation standards for operator integration should be based on international standards. Additionally quantitative factors such as financial situation, business performance and participating companies' profitability, and the qualitative factors such as management ability, technology, and labor relations should be considered. Second, the timing of North Port's operator integration should be prioritized in the short term in conjunction with the commencement of its phase 2-4, 2-5, and 2-6. The integration of New Port operators should provide a road map for a relatively long-term perspective. Third, the participation of BPA' integrated operators should be considered in terms of publicity as a policy coordinator between terminals and by pursuing the profitability of entering into overseas business by fostering Korean global terminal operators. The scope and role of participation ensures that the experience and technology of the terminal operation business is maximized. Fourth, because physically intergrating the North Port' operator into a single corporate form is difficult, initially establishing a special purpose company to maximize the effect of the integrated operation is necessary. Then, the operators decided to convert to a holding company given the termination of the lease term contract with the State or BPA, and ultimately proposed a merger into a single corporation.

Development of Human Sense Indexes for Web-based Database and Its Supports (웹 기반 감성지표 개발 및 보급에 관한 연구)

  • 김진호;이동춘;박민용;임좌상;박수찬;윤정선;임현균;김경택
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.333-337
    • /
    • 1999
  • 본 연구의 목표는 감성적 제품이나 환경을 체계적으로 개발하고 평가하는 과정에서 요구되는 DB를 개발하는 것으로서, 산업체에서의 활용도가 높고 공공성이 큰 데이터를 중심으로 지표를 수집하여 보급체계를 확립하는 것이다. 이번 연구에서는 2 단계 감성공학기반기술 연구 결과인 충 35 개 보고서 전자 파일을 입수하여 감성지표화 작업을 수행하였다. Web 상으로 지원 가능한 감성공학 지표(정보물)를 도출 하였으며, 감성공학 문헌, Handbook, Data compendium, 사전 등을 중심으로 지표를 분류하여 체계화하였다. 연구보고서로부터 도출 된 초기 지표로는 감성지표 185 개, 개발 제품/시스템 소개물 94 개, 웹으로 지원 가능한 감성공학 관련 정보물 35 개가 있다. 이를 기초로 활용 가능한 지표를 엄선하였다. 감성 제품 개발에 필요한 감성지표를 쉽고, 편리하고, 정확하게 검색하고, 감성공학 연구 결과들을 체계적으로 정리하기 위해 지표의 표현 방법, 용어, 기술 수준 등을 표준화하였다. 초기 도출된 감성지표 리스트 중 활용가치가 높은 결과물을 중심으로 감성지표를 정리하였으며, 현재 262개 지표에 대해서 연구책임자의 검증을 거쳐 지표화 작업을 완료하였다. 이들 결과는 인터넷을 통하여 서비스를 실시할 예정이며, 앞으로 제품설계, 환경응용 기술로서 감성공학적 제품설계를 위한 guideline으로 사용될 것으로 기대된다. 또한 이들 지표를 보급하기 위한 목적으로 개발한 감성공학 데이터베이스 시스템은 감성공학 자료의 보급체계로 활용되어 기업간의 정보교환 및 커뮤니케이션 유도를 통한 기업체간의 기술 및 관리 유기체계 구축에 활용될 것으로 기대된다.하도록 한다. 이는 기초과학 수준이 높은 북방권 국가들의 과학자들이 주로 활용되고 있다는 점에서도 잘 알 수 있으며 우리의 과학기술 약점을 보완하는 원천으로써 외국인 연구 인력이 대안이 되고 있음을 시사한다. 본 연구에서는 한국 연구 조직에서 일하는 외국인 연구자들의 동기 및 성과에 영향을 미치는 많은 요인들을 확인할 수 있었다. 상관관계, 분산분석, 회귀분석 등을 통해 활용 성과에 미치는 영향 요인들을 도출하였다. 설문 분석을 통하여 동기 및 성과 사이에는 강한 상관관계가 존재하는 것을 확인할 수 있었으며 이는 전통적인 동기 이론들과 부합한다. 대부분의 변수가 동기 및 성과에 동시에 영향을 미치는 것으로 조사되었으며 그중에서도 조직 협력 문화, 외국인 연구자의 의사소통 및 협력성, 외국인 연구자의 연구 능력 관련 변수들 및 연구 프로젝트의 기술수명주기, 외국인 연구자의 기존 기술지식의 흡수 등이 가장 중요한 변수로 나타났다. 이는 우리가 주로 중국 및 러시아 과학자들을 활용하여 상업화하는 외국인 연구인력 활용 패턴과도 일치하는 결과이다. 즉 우호적인 조직문화를 가지고 있는 연구 조직에서, 이미 과학기술 지식을 많이 가지고 있고 연구 능력도 높은 외국인 과학기술자를, 한국에서 기술이 태동 또는 성장하고 있는 연구 분야에서 활용하는 것이 가장 성과가 좋다는 사실을 확인시켜 주고 있다. 국내에서 최초로 수행된 본 연구는 외국인 연구 인력의 활용 성과가 매우 높으며, 우리의 과학기술혁신시스템을 보완하는 유효한 수단으로써 외국인 연구 인력이 중요한 대안이 될 수 있음을 발견하였다. 외국인 연구 인력을 잘 활용하기 위하여 문제점 및 개선방안을 활용 환경, 연구 인력

  • PDF

Assessment of Facility Management Functions for Life-Cycle Information Sharing (생애주기 정보공유를 위한 자산관리 업무기능 분석)

  • Lee, Kwangjin;Jung, Youngsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.6
    • /
    • pp.40-52
    • /
    • 2016
  • In the 1960s and 1970s when Korea experienced rapid economic growth, a considerable number of buildings were constructed in the country. And since 2000, a large number of sizable and complex buildings have been being built. Specifically, as the operation and maintenance cost alone accounts for 85% of the life cycle cost of a building, efficient Facility Management (FM) is required. However, data needed in the operation and maintenance phase are not sufficiently exchangeable with data created in other phases like the planning, design and construction phases. The upper phase has higher value of data but data exchange rate is low, resulting in inefficiency. To this end, this research derived major business functions for facility management: three categories and 19 detailed functions in classification from owner's perspective. Based on the derived items, this research proposes a methodology to evaluate the 'FM Workload', 'Facility Management (FM) Data', and 'FM Data Created in Engineering and Construction Phases' thereby analyzing plans for efficient operation and maintenance. The applicability of proposed methodology was tested by examining real-world cases of public and private companies.

Estimation of Small Hydropower Resources by Hydrologic Analysis of Han-River Standard Basin (한강수계 표준유역의 수문특성분석을 통한 소수력 자원량 산정)

  • Seo, Sung Ho;Oh, Kuk Ryul;Park, Wan Soon;Jeong, Sang Man
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.47-47
    • /
    • 2011
  • 에너지자원이 부족하여 에너지 해외의존도가 약 80% 이상인 우리나라의 특성상 에너지 해외의존도를 경감시키고 에너지부족 상황을 안정시키기 위하여 국내의 부존에너지를 최대한 활용하는 것이 필요하다. 또한 지구온난화에 대처하는 범세계적인 규제에 대비하기 위하여, 청정에너지를 적극 개발하여 에너지자립도를 향상시켜야 한다. 신재생에너지 중 하나인 소수력은 친환경적인 청정에너지 중 하나로 다른 대체 에너지원에 비해 높은 에너지 밀도를 가지고 있어 개발 가치가 큰 부존자원으로 평가되고 있다. 그리고 소수력은 여러측면의 사회적 환경적 이점으로 최근에는 선진국에서도 매우 큰 관심을 끌고 있으며, 에너지 자원이 빈약하여 대부분 석유수입에 의존하는 우리나라는 지역에너지로 소수력을 적극 개발하여야 한다. 소수력 부존량이 풍부한 우리나라는 1982년에 소수력 개발 활성화 방안이 공표되면서부터 정부주도 하에 소수력 발전소 건설에 관한 연구를 적극적으로 지원하게 되었다. 대수력과 비교하여 소수력의 장점으로는 비교적 짧은 계획 및 시공기간, 낮은 투자비용, 개인이나 기업을 통한 투자참여, 주위 인력이나 자재를 이용한 쉬운 설치, 적은 환경적인 피해 등이 있다. 이와 같이 청정에너지 중 하나인 소수력의 개발과 활용을 위하여 IT 기술을 접목한 다양한 응용시스템 구축이 진행되고 있다. 특히, 한국에너지기술연구원에서는 신재생에너지 개발 및 보급 확대를 목표로 2006년에 신재생에너지 자원지도시스템을 구축하였으며, 이를 웹상에서 제공하고 있다. 소수력 발전시설의 적극적인 활용을 위해서는 초기설계시 장기유출 특성분석을 통해 해당유역의 수자원을 최대로 활용하고, 지형적인 요소를 이용하여 전기의 생산이 최대가 되도록 하는 최적설계가 이루어 져야 한다. 따라서 본 연구에서는 소수력 발전시설의 최적설계를 위해 한강수계 258개 표준유역 중 섬강합류점에 대하여 자원지도를 활용하여 연평균유량을 추정한 후 소수력 자원량을 산정하였고, 그 결과로 시설용량과 연간전기생산량은 각각 1,633kW, 6,224MWh로 산정되었다. 또한 유출량의 미계측 유역에서의 소수력 발전성능을 예측하기 위한 방법으로 Weibull 분포의 특성화 방법을 선택하여 그 적용성을 검토하였다. 섬강합류점 표준유역 내에 위치하고 있는 목계관측소, 앙성관측소에서의 10개년(1999~2008) 강우자료를 바탕으로 유황곡선을 작성하여 상관관계분석을 실시한 결과 목계관측소에서 0.994701, 앙성관측소에서 0.992616으로 관측치와 계산값이 상당히 유사한 것으로 나타났다.

  • PDF

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.